6.
Legris M, Ince Y, Fankhauser C
. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun. 2019; 10(1):5219.
PMC: 6864062.
DOI: 10.1038/s41467-019-13045-0.
View
7.
Bae G, Choi G
. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol. 2008; 59:281-311.
DOI: 10.1146/annurev.arplant.59.032607.092859.
View
8.
Li J, Hiltbrunner A
. Is the Pr form of phytochrome biologically active in the nucleus?. Mol Plant. 2021; 14(4):535-537.
DOI: 10.1016/j.molp.2021.03.002.
View
9.
Fankhauser C, Chen M
. Transposing phytochrome into the nucleus. Trends Plant Sci. 2008; 13(11):596-601.
DOI: 10.1016/j.tplants.2008.08.007.
View
10.
Klose C, Viczian A, Kircher S, Schafer E, Nagy F
. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. New Phytol. 2015; 206(3):965-71.
PMC: 4406131.
DOI: 10.1111/nph.13207.
View
11.
Castillon A, Shen H, Huq E
. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 2007; 12(11):514-521.
DOI: 10.1016/j.tplants.2007.10.001.
View
12.
Leivar P, Quail P
. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 2010; 16(1):19-28.
PMC: 3019249.
DOI: 10.1016/j.tplants.2010.08.003.
View
13.
Pham V, Kathare P, Huq E
. Phytochromes and Phytochrome Interacting Factors. Plant Physiol. 2017; 176(2):1025-1038.
PMC: 5813575.
DOI: 10.1104/pp.17.01384.
View
14.
Ni M, Tepperman J, Quail P
. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell. 1998; 95(5):657-67.
DOI: 10.1016/s0092-8674(00)81636-0.
View
15.
Stockinger E, Gilmour S, Thomashow M
. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A. 1997; 94(3):1035-40.
PMC: 19635.
DOI: 10.1073/pnas.94.3.1035.
View
16.
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K
. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998; 10(8):1391-406.
PMC: 144379.
DOI: 10.1105/tpc.10.8.1391.
View
17.
Thomashow M
. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 2004; 50:571-599.
DOI: 10.1146/annurev.arplant.50.1.571.
View
18.
Chinnusamy V, Zhu J, Zhu J
. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007; 12(10):444-51.
DOI: 10.1016/j.tplants.2007.07.002.
View
19.
Dong X, Yan Y, Jiang B, Shi Y, Jia Y, Cheng J
. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures. EMBO J. 2020; 39(13):e103630.
PMC: 7327500.
DOI: 10.15252/embj.2019103630.
View
20.
Shimizu-Sato S, Huq E, Tepperman J, Quail P
. A light-switchable gene promoter system. Nat Biotechnol. 2002; 20(10):1041-4.
DOI: 10.1038/nbt734.
View