» Articles » PMID: 38574399

Data-driven Classification of Cognitively Normal and Mild Cognitive Impairment Subtypes Predicts Progression in the NACC Dataset

Overview
Specialties Neurology
Psychiatry
Date 2024 Apr 4
PMID 38574399
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: Data-driven neuropsychological methods can identify mild cognitive impairment (MCI) subtypes with stronger associations to dementia risk factors than conventional diagnostic methods.

Methods: Cluster analysis used neuropsychological data from participants without dementia (mean age = 71.6 years) in the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (n = 26,255) and the "normal cognition" subsample (n = 16,005). Survival analyses examined MCI or dementia progression.

Results: Five clusters were identified: "Optimal" cognitively normal (oCN; 13.2%), "Typical" CN (tCN; 28.0%), Amnestic MCI (aMCI; 25.3%), Mixed MCI-Mild (mMCI-Mild; 20.4%), and Mixed MCI-Severe (mMCI-Severe; 13.0%). Progression to dementia differed across clusters (oCN < tCN < aMCI < mMCI-Mild < mMCI-Severe). Cluster analysis identified more MCI cases than consensus diagnosis. In the "normal cognition" subsample, five clusters emerged: High-All Domains (High-All; 16.7%), Low-Attention/Working Memory (Low-WM; 22.1%), Low-Memory (36.3%), Amnestic MCI (16.7%), and Non-amnestic MCI (naMCI; 8.3%), with differing progression rates (High-All < Low-WM = Low-Memory < aMCI < naMCI).

Discussion: Our data-driven methods outperformed consensus diagnosis by providing more precise information about progression risk and revealing heterogeneity in cognition and progression risk within the NACC "normal cognition" group.

Citing Articles

TMS-derived short afferent inhibition discriminates cognitive status in older adults without dementia.

Sundman M, Green J, Fuglevand A, Chou Y Aging Brain. 2024; 6:100123.

PMID: 39132326 PMC: 11315225. DOI: 10.1016/j.nbas.2024.100123.


Data-driven classification of cognitively normal and mild cognitive impairment subtypes predicts progression in the NACC dataset.

Edmonds E, Thomas K, Rapcsak S, Lindemer S, Delano-Wood L, Salmon D Alzheimers Dement. 2024; 20(5):3442-3454.

PMID: 38574399 PMC: 11095435. DOI: 10.1002/alz.13793.

References
1.
Graves L, Edmonds E, Thomas K, Weigand A, Cooper S, Bondi M . Evidence for the Utility of Actuarial Neuropsychological Criteria Across the Continuum of Normal Aging, Mild Cognitive Impairment, and Dementia. J Alzheimers Dis. 2020; 78(1):371-386. PMC: 7683095. DOI: 10.3233/JAD-200778. View

2.
Monsell S, Dodge H, Zhou X, Bu Y, Besser L, Mock C . Results From the NACC Uniform Data Set Neuropsychological Battery Crosswalk Study. Alzheimer Dis Assoc Disord. 2015; 30(2):134-9. PMC: 4834278. DOI: 10.1097/WAD.0000000000000111. View

3.
Petersen R . Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004; 256(3):183-94. DOI: 10.1111/j.1365-2796.2004.01388.x. View

4.
Bangen K, Clark A, Werhane M, Edmonds E, Nation D, Evangelista N . Cortical Amyloid Burden Differences Across Empirically-Derived Mild Cognitive Impairment Subtypes and Interaction with APOE ɛ4 Genotype. J Alzheimers Dis. 2016; 52(3):849-61. PMC: 4884141. DOI: 10.3233/JAD-150900. View

5.
Thomas K, Bangen K, Weigand A, Ortiz G, Walker K, Salmon D . Cognitive Heterogeneity and Risk of Progression in Data-Driven Subtle Cognitive Decline Phenotypes. J Alzheimers Dis. 2022; 90(1):323-331. PMC: 9661321. DOI: 10.3233/JAD-220684. View