» Articles » PMID: 38571814

Christchurch Modulates β-catenin/Wnt Signaling in IPS Cell-derived Cerebral Organoids from Alzheimer's Cases

Abstract

A patient with the E280A mutation and homozygous for Christchurch () displayed extreme resistance to Alzheimer's disease (AD) cognitive decline and tauopathy, despite having a high amyloid burden. To further investigate the differences in biological processes attributed to , we generated induced pluripotent stem (iPS) cell-derived cerebral organoids from this resistant case and a non-protected control, using CRISPR/Cas9 gene editing to modulate expression. In the cerebral organoids, we observed a protective pattern from early tau phosphorylation. ScRNA sequencing revealed regulation of Cadherin and Wnt signaling pathways by , with immunostaining indicating elevated β-catenin protein levels. Further reporter assays unexpectedly demonstrated that ApoE3Ch functions as a Wnt3a signaling enhancer. This work uncovered a neomorphic molecular mechanism of protection of ApoE3 Christchurch, which may serve as the foundation for the future development of protected case-inspired therapeutics targeting AD and tauopathies.

Citing Articles

Understanding recent advances in non-amyloid/non-tau (NANT) biomarkers and therapeutic targets in Alzheimer's disease.

Van Eldik L, Siemers E, Collins E, Gold M, Henley D, Johannsen P Alzheimers Dement (N Y). 2025; 10(4):e70014.

PMID: 39748839 PMC: 11694522. DOI: 10.1002/trc2.70014.


Microglial APOE3 Christchurch protects neurons from Tau pathology in a human iPSC-based model of Alzheimer's disease.

Sun G, Wang C, Mazzarino R, Perez-Corredor P, Davtyan H, Blurton-Jones M Cell Rep. 2024; 43(12):114982.

PMID: 39612244 PMC: 11753789. DOI: 10.1016/j.celrep.2024.114982.


Amyloid-β predominant Alzheimer's disease neuropathologic change.

Kovacs G, Katsumata Y, Wu X, Aung K, Fardo D, Forrest S Brain. 2024; 148(2):401-407.

PMID: 39417691 PMC: 11788189. DOI: 10.1093/brain/awae325.


Molecular Therapeutics in Development to Treat Alzheimer's Disease.

Tartaglia M, Ingelsson M Mol Diagn Ther. 2024; 29(1):9-24.

PMID: 39316339 PMC: 11748464. DOI: 10.1007/s40291-024-00738-6.

References
1.
Zhao J, Ikezu T, Lu W, Macyczko J, Li Y, Lewis-Tuffin L . APOE deficiency impacts neural differentiation and cholesterol biosynthesis in human iPSC-derived cerebral organoids. Stem Cell Res Ther. 2023; 14(1):214. PMC: 10441762. DOI: 10.1186/s13287-023-03444-y. View

2.
Di Lullo E, Kriegstein A . The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 2017; 18(10):573-584. PMC: 5667942. DOI: 10.1038/nrn.2017.107. View

3.
Cao Y, Wang X, Peng G . SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data. Front Genet. 2020; 11:490. PMC: 7235421. DOI: 10.3389/fgene.2020.00490. View

4.
Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey J . Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Rep. 2021; 34(2):108615. PMC: 7809623. DOI: 10.1016/j.celrep.2020.108615. View

5.
Arboleda-Velasquez J, Lopera F, OHare M, Delgado-Tirado S, Marino C, Chmielewska N . Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nat Med. 2019; 25(11):1680-1683. PMC: 6898984. DOI: 10.1038/s41591-019-0611-3. View