» Articles » PMID: 38571495

Prospects and Challenges of CAR-T Cell Therapy Combined with ICIs

Overview
Journal Front Oncol
Specialty Oncology
Date 2024 Apr 4
PMID 38571495
Authors
Affiliations
Soon will be listed here.
Abstract

Immune checkpoint molecules are a group of molecules expressed on the surface of immune cells that primarily regulate their immune homeostasis. Chimeric antigen receptor (CAR) T cell therapy is an immunotherapeutic technology that realizes tumor-targeted killing by constructing synthetic T cells expressing specific antigens through biotechnology. Currently, CAR-T cell therapy has achieved good efficacy in non-solid tumors, but its treatment of solid tumors has not yielded the desired results. Immune checkpoint inhibitors (ICIs) combined with CAR-T cell therapy is a novel combination therapy with high expectations to defeat solid tumors. This review addresses the challenges and expectations of this combination therapy in the treatment of solid tumors.

Citing Articles

Chimeric Antigen Receptor Cell Therapy: Empowering Treatment Strategies for Solid Tumors.

Jaing T, Hsiao Y, Wang Y Curr Issues Mol Biol. 2025; 47(2).

PMID: 39996811 PMC: 11854309. DOI: 10.3390/cimb47020090.


Non-small cell lung cancer and the tumor microenvironment: making headway from targeted therapies to advanced immunotherapy.

De Lucia A, Mazzotti L, Gaimari A, Zurlo M, Maltoni R, Cerchione C Front Immunol. 2025; 16:1515748.

PMID: 39995659 PMC: 11847692. DOI: 10.3389/fimmu.2025.1515748.


Tri-specific tribodies targeting 5T4, CD3, and immune checkpoint drive stronger functional T-cell responses than combinations of antibody therapeutics.

Passariello M, Manna L, Rapuano Lembo R, Yoshioka A, Inoue T, Kajiwara K Cell Death Discov. 2025; 11(1):58.

PMID: 39929828 PMC: 11811032. DOI: 10.1038/s41420-025-02329-8.


From Biology to Clinical Practice: The Bone Marrow Microenvironment in Multiple Myeloma.

Fotiou D, Katodritou E J Clin Med. 2025; 14(2.

PMID: 39860333 PMC: 11765558. DOI: 10.3390/jcm14020327.


Advances in Cell and Immune Therapies for Melanoma.

Timis T, Buruiana S, Dima D, Nistor M, Muresan X, Cenariu D Biomedicines. 2025; 13(1).

PMID: 39857682 PMC: 11761552. DOI: 10.3390/biomedicines13010098.


References
1.
Hay K, Gauthier J, Hirayama A, Voutsinas J, Wu Q, Li D . Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood. 2019; 133(15):1652-1663. PMC: 6460418. DOI: 10.1182/blood-2018-11-883710. View

2.
Hua Y, Vella G, Rambow F, Allen E, Antoranz Martinez A, Duhamel M . Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1 T lymphocyte niches through a feed-forward loop. Cancer Cell. 2022; 40(12):1600-1618.e10. PMC: 9899876. DOI: 10.1016/j.ccell.2022.11.002. View

3.
Maude S, Laetsch T, Buechner J, Rives S, Boyer M, Bittencourt H . Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018; 378(5):439-448. PMC: 5996391. DOI: 10.1056/NEJMoa1709866. View

4.
Berdeja J, Madduri D, Usmani S, Jakubowiak A, Agha M, Cohen A . Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021; 398(10297):314-324. DOI: 10.1016/S0140-6736(21)00933-8. View

5.
DuFort C, DelGiorno K, Hingorani S . Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma. Gastroenterology. 2016; 150(7):1545-1557.e2. PMC: 4957812. DOI: 10.1053/j.gastro.2016.03.040. View