» Articles » PMID: 38568968

Subgenome-aware Analyses Reveal the Genomic Consequences of Ancient Allopolyploid Hybridizations Throughout the Cotton Family

Overview
Specialty Science
Date 2024 Apr 3
PMID 38568968
Authors
Affiliations
Soon will be listed here.
Abstract

Malvaceae comprise some 4,225 species in 243 genera and nine subfamilies and include economically important species, such as cacao, cotton, durian, and jute, with cotton an important model system for studying the domestication of polyploids. Here, we use chromosome-level genome assemblies from representatives of five or six subfamilies (depending on the placement of ) to differentiate coexisting subgenomes and their evolution during the family's deep history. The results reveal that the allohexaploid Helicteroideae partially derive from an allotetraploid Sterculioideae and also form a component of the allodecaploid Bombacoideae and Malvoideae. The ancestral Malvaceae karyotype consists of 11 protochromosomes. Four subfamilies share a unique reciprocal chromosome translocation, and two other subfamilies share a chromosome fusion. DNA alignments of single-copy nuclear genes do not yield the same relationships as inferred from chromosome structural traits, probably because of genes originating from different ancestral subgenomes. These results illustrate how chromosome-structural data can unravel the evolutionary history of groups with ancient hybrid genomes.

Citing Articles

Pangeneric genome analyses reveal the evolution and diversity of the orchid genus Dendrobium.

Li Y, Zhang B, Zhang S, Wong C, Liang Q, Pang S Nat Plants. 2025; .

PMID: 39794493 DOI: 10.1038/s41477-024-01902-w.


Chromosome-scale genome assembly of and comparative genomic analyses shed light on its genome evolution.

Chen B, Yang Z, Yang L, Zhu Y, Li X, Wang L Front Plant Sci. 2024; 15:1469375.

PMID: 39559763 PMC: 11570261. DOI: 10.3389/fpls.2024.1469375.


New insights into the phylogenetic relationships within the Lauraceae from mitogenomes.

Song Y, Yu Q, Zhang D, Chen L, Tan Y, Zhu W BMC Biol. 2024; 22(1):241.

PMID: 39444010 PMC: 11515631. DOI: 10.1186/s12915-024-02040-7.


Recent and Recurrent Autopolyploidization Fueled Diversification of Snow Carp on the Tibetan Plateau.

Li X, Wang M, Zou M, Guan X, Xu S, Chen W Mol Biol Evol. 2024; 41(11).

PMID: 39437268 PMC: 11542630. DOI: 10.1093/molbev/msae221.


Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation.

Kitony J, Colt K, Abramson B, Hartwick N, Petrus S, Konozy E Nat Commun. 2024; 15(1):8833.

PMID: 39396056 PMC: 11470940. DOI: 10.1038/s41467-024-53157-w.


References
1.
Hu H, Sun P, Yang Y, Ma J, Liu J . Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. J Integr Plant Biol. 2023; 65(6):1479-1489. DOI: 10.1111/jipb.13455. View

2.
Chen Z, Sreedasyam A, Ando A, Song Q, Santiago L, Hulse-Kemp A . Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet. 2020; 52(5):525-533. PMC: 7203012. DOI: 10.1038/s41588-020-0614-5. View

3.
Murat F, Xu J, Tannier E, Abrouk M, Guilhot N, Pont C . Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 2010; 20(11):1545-57. PMC: 2963818. DOI: 10.1101/gr.109744.110. View

4.
Yang Z . PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007; 24(8):1586-91. DOI: 10.1093/molbev/msm088. View

5.
Gao Y, Wang H, Liu C, Chu H, Dai D, Song S . De novo genome assembly of the red silk cotton tree (Bombax ceiba). Gigascience. 2018; 7(5). PMC: 5967522. DOI: 10.1093/gigascience/giy051. View