6.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M
. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26(9-10):1231-7.
DOI: 10.1016/s0891-5849(98)00315-3.
View
7.
Ou B, Prior R
. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem. 2001; 49(10):4619-26.
DOI: 10.1021/jf010586o.
View
8.
Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon J
. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem. 2009; 57(5):1768-74.
DOI: 10.1021/jf803011r.
View
9.
Davalos A, Gomez-Cordoves C, Bartolome B
. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem. 2004; 52(1):48-54.
DOI: 10.1021/jf0305231.
View
10.
Riaz A, Rasul A, Hussain G, Zahoor M, Jabeen F, Subhani Z
. Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities. Adv Pharmacol Sci. 2018; 2018:9794625.
PMC: 5954929.
DOI: 10.1155/2018/9794625.
View
11.
Ramlagan P, Rondeau P, Planesse C, Neergheen-Bhujun V, Bourdon E, Bahorun T
. Comparative suppressing effects of black and green teas on the formation of advanced glycation end products (AGEs) and AGE-induced oxidative stress. Food Funct. 2017; 8(11):4194-4209.
DOI: 10.1039/c7fo01038a.
View
12.
Baeza G, Sarria B, Bravo L, Mateos R
. Polyphenol content, in vitro bioaccessibility and antioxidant capacity of widely consumed beverages. J Sci Food Agric. 2017; 98(4):1397-1406.
DOI: 10.1002/jsfa.8607.
View
13.
Watanabe J, Oki T, Takebayashi J, Yamasaki K, Takano-Ishikawa Y, Hino A
. Improvement of the lipophilic-oxygen radical absorbance capacity (L-ORAC) method and single-laboratory validation. Biosci Biotechnol Biochem. 2013; 77(4):857-9.
DOI: 10.1271/bbb.120786.
View
14.
Jin Y, Zhao J, Kim E, Kim K, Kang S, Lee H
. Comprehensive Investigation of the Effects of Brewing Conditions in Sample Preparation of Green Tea Infusions. Molecules. 2019; 24(9).
PMC: 6539062.
DOI: 10.3390/molecules24091735.
View
15.
Phonsatta N, Deetae P, Luangpituksa P, Grajeda-Iglesias C, Figueroa-Espinoza M, Le Comte J
. Comparison of Antioxidant Evaluation Assays for Investigating Antioxidative Activity of Gallic Acid and Its Alkyl Esters in Different Food Matrices. J Agric Food Chem. 2017; 65(34):7509-7518.
DOI: 10.1021/acs.jafc.7b02503.
View
16.
Huang D, Ou B, Hampsch-Woodill M, Flanagan J, Deemer E
. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J Agric Food Chem. 2002; 50(7):1815-21.
DOI: 10.1021/jf0113732.
View
17.
Parrot I, Bisi H, Folliard A, Bonnard M
. Volatile Compounds from Flowers of Elaeagnus x submacrophylla Servett.: Extraction, Identification of Flavonoids, and Antioxidant Capacity. Chempluschem. 2021; 86(12):1623-1634.
DOI: 10.1002/cplu.202100443.
View
18.
Zuchowski J, Skalski B, Juszczak M, Wozniak K, Stochmal A, Olas B
. LC/MS Analysis of Saponin Fraction from the Leaves of (L.) A. Nelson and Its Biological Properties in Different In Vitro Models. Molecules. 2020; 25(13).
PMC: 7411717.
DOI: 10.3390/molecules25133004.
View
19.
Bendaikha S, Gadaut M, Harakat D, Magid A
. Acylated flavonol glycosides from the flower of Elaeagnus angustifolia L. Phytochemistry. 2014; 103:129-136.
DOI: 10.1016/j.phytochem.2014.03.025.
View
20.
Liao C, Ho Y, Huang G, Yang C, Chao C, Chang Y
. One lignanoid compound and four triterpenoid compounds with anti-inflammatory activity from the leaves of Elaeagnus oldhamii maxim. Molecules. 2013; 18(11):13218-27.
PMC: 6270453.
DOI: 10.3390/molecules181113218.
View