» Articles » PMID: 38555396

All-dielectric Polarization-sensitive Metasurface for Terahertz Polarimetric Imaging

Overview
Journal Sci Rep
Specialty Science
Date 2024 Mar 30
PMID 38555396
Authors
Affiliations
Soon will be listed here.
Abstract

Terahertz polarimetric imaging, capable of capturing not only intensity profiles but also the polarization states of the incident pattern, is an essential technique with promising applications such as security scans and medical diagnoses. Recently, a novel approach for terahertz imaging has been proposed using a metasurface absorber that converts terahertz light into a temperature profile. However, polarization remains indistinguishable in the imaging process due to the isotropic geometry of the metasurface. To address this issue, this study introduces an all-dielectric, polarization-sensitive metasurface absorber and showcases its suitability for terahertz polarimetric imaging. Optical and thermal simulations confirm that the polarization dependence of our metasurface is translated into the thermal domain, allowing us to distinguish both intensity and polarization states in the incoming image. Additionally, we demonstrate that polarimetric imaging under general, elliptical polarization is attainable. This metasurface facilitates terahertz polarimetric imaging, eliminating the need for complex setups or bulky components, thereby reducing the form factor and enabling widespread use.

Citing Articles

Dielectric metasurface-assisted terahertz sensing: mechanism, fabrication, and multiscenario applications.

Chen X, Xin S, Liu Q, Meng Y, Yu D, Tseng M Nanophotonics. 2025; 14(3):271-296.

PMID: 39967775 PMC: 11831400. DOI: 10.1515/nanoph-2024-0573.


A Room-Temperature Terahertz Photodetector Imaging with High Stability and Polarization-Sensitive Based on Perovskite/Metasurface.

Li Y, Jia Y, Yang H, Wu Y, Cao Y, Zhang X Adv Sci (Weinh). 2024; 12(6):e2407634.

PMID: 39686840 PMC: 11809364. DOI: 10.1002/advs.202407634.


Polarimetry terahertz imaging of human breast cancer surgical specimens.

Gurjar N, Bailey K, El-Shenawee M J Med Imaging (Bellingham). 2024; 11(6):065503.

PMID: 39649775 PMC: 11619717. DOI: 10.1117/1.JMI.11.6.065503.


Design and Numerical Modeling of Terahertz Metasurface with Dual Functions of Sensing and Filtering.

Zhang L, Sun H, Chen Z, Tang R, Yang J, Li W Sensors (Basel). 2024; 24(15).

PMID: 39123870 PMC: 11314842. DOI: 10.3390/s24154823.


All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range.

Xu Z, Li Y, Han B, Wang Y, Yuan Q, Li Y Materials (Basel). 2024; 17(9).

PMID: 38730908 PMC: 11084379. DOI: 10.3390/ma17092098.

References
1.
Ferguson B, Zhang X . Materials for terahertz science and technology. Nat Mater. 2003; 1(1):26-33. DOI: 10.1038/nmat708. View

2.
Wang L, Huang X, Li M, Dong J . Chirality selective metamaterial absorber with dual bands. Opt Express. 2019; 27(18):25983-25993. DOI: 10.1364/OE.27.025983. View

3.
Chen B, Wang X, Li W, Li C, Wang Z, Guo H . Electrically addressable integrated intelligent terahertz metasurface. Sci Adv. 2022; 8(41):eadd1296. PMC: 9555782. DOI: 10.1126/sciadv.add1296. View

4.
Alves F, Pimental L, Grbovic D, Karunasiri G . MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial. Sci Rep. 2018; 8(1):12466. PMC: 6102258. DOI: 10.1038/s41598-018-30858-z. View

5.
Taylor Z, Singh R, Bennett D, Tewari P, Kealey C, Bajwa N . THz Medical Imaging: Hydration Sensing. IEEE Trans Terahertz Sci Technol. 2015; 1(1):201-219. PMC: 4467694. DOI: 10.1109/TTHZ.2011.2159551. View