» Articles » PMID: 38553609

Engineering APOBEC3A Deaminase for Highly Accurate and Efficient Base Editing

Abstract

Cytosine base editors (CBEs) are effective tools for introducing C-to-T base conversions, but their clinical applications are limited by off-target and bystander effects. Through structure-guided engineering of human APOBEC3A (A3A) deaminase, we developed highly accurate A3A-CBE (haA3A-CBE) variants that efficiently generate C-to-T conversion with a narrow editing window and near-background level of DNA and RNA off-target activity, irrespective of methylation status and sequence context. The engineered deaminase domains are compatible with PAM-relaxed SpCas9-NG variant, enabling accurate correction of pathogenic mutations in homopolymeric cytosine sites through flexible positioning of the single-guide RNAs. Dual adeno-associated virus delivery of one haA3A-CBE variant to a mouse model of tyrosinemia induced up to 58.1% editing in liver tissues with minimal bystander editing, which was further reduced through single dose of lipid nanoparticle-based messenger RNA delivery of haA3A-CBEs. These results highlight the tremendous promise of haA3A-CBEs for precise genome editing to treat human diseases.

Citing Articles

A comprehensive benchmark for multiple highly efficient base editors with broad targeting scope.

Wang X, Cheng X, Li Z, Ma S, Zhang H, Chen Z bioRxiv. 2025; .

PMID: 39763781 PMC: 11702641. DOI: 10.1101/2024.12.17.628899.


Accelerated discovery and miniaturization of novel single-stranded cytidine deaminases.

Deng J, Li X, Yu H, Yang L, Wang Z, Yi W Nucleic Acids Res. 2024; 52(18):11188-11202.

PMID: 39271120 PMC: 11472066. DOI: 10.1093/nar/gkae800.


Advancements of CRISPR-Mediated Base Editing in Crops and Potential Applications in .

Yang X, Zhu P, Gui J Int J Mol Sci. 2024; 25(15).

PMID: 39125884 PMC: 11313136. DOI: 10.3390/ijms25158314.


Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer.

Kawale A, Zou L DNA Repair (Amst). 2024; 141:103734.

PMID: 39047499 PMC: 11330346. DOI: 10.1016/j.dnarep.2024.103734.

References
1.
Gaudelli N, Komor A, Rees H, Packer M, Badran A, Bryson D . Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017; 551(7681):464-471. PMC: 5726555. DOI: 10.1038/nature24644. View

2.
Komor A, Kim Y, Packer M, Zuris J, Liu D . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016; 533(7603):420-4. PMC: 4873371. DOI: 10.1038/nature17946. View

3.
Zhao D, Li J, Li S, Xin X, Hu M, Price M . Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2020; 39(1):35-40. DOI: 10.1038/s41587-020-0592-2. View

4.
Kurt I, Zhou R, Iyer S, Garcia S, Miller B, Langner L . CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol. 2020; 39(1):41-46. PMC: 7854778. DOI: 10.1038/s41587-020-0609-x. View

5.
Kim K, Ryu S, Kim S, Baek G, Kim D, Lim K . Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. 2017; 35(5):435-437. DOI: 10.1038/nbt.3816. View