» Articles » PMID: 38499810

New Plastids, Old Proteins: Repeated Endosymbiotic Acquisitions in Kareniacean Dinoflagellates

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2024 Mar 19
PMID 38499810
Authors
Affiliations
Soon will be listed here.
Abstract

Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.

Citing Articles

Plastid translocon recycling in dinoflagellates demonstrates the portability of complex plastids between hosts.

Lewis W, Paris G, Beedessee G, Koreny L, Flores V, Dendooven T Curr Biol. 2024; 34(23):5494-5506.e3.

PMID: 39571577 PMC: 7617431. DOI: 10.1016/j.cub.2024.10.034.


Interpreting the complexities of the plastid genome in dinoflagellates: a mini-review of recent advances.

Tang L, Tam N, Lam W, Lee T, Xu S, Lee C Plant Mol Biol. 2024; 114(6):114.

PMID: 39432142 DOI: 10.1007/s11103-024-01511-3.

References
1.
Tice A, Zihala D, Panek T, Jones R, Salomaki E, Nenarokov S . PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021; 19(8):e3001365. PMC: 8345874. DOI: 10.1371/journal.pbio.3001365. View

2.
Richardson E, Dorrell R, Howe C . Genome-wide transcript profiling reveals the coevolution of plastid gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate Karlodinium veneficum. Mol Biol Evol. 2014; 31(9):2376-86. PMC: 4137713. DOI: 10.1093/molbev/msu189. View

3.
Crooks G, Hon G, Chandonia J, Brenner S . WebLogo: a sequence logo generator. Genome Res. 2004; 14(6):1188-90. PMC: 419797. DOI: 10.1101/gr.849004. View

4.
Klinger C, Paoli L, Newby R, Wang M, Carroll H, Leblond J . Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends. Genome Biol Evol. 2018; 10(4):1019-1038. PMC: 5888634. DOI: 10.1093/gbe/evy057. View

5.
Riccio G, De Luca D, Lauritano C . Monogalactosyldiacylglycerol and Sulfolipid Synthesis in Microalgae. Mar Drugs. 2020; 18(5). PMC: 7281551. DOI: 10.3390/md18050237. View