» Articles » PMID: 38499523

Hepatic Nutrient and Hormone Signaling to MTORC1 Instructs the Postnatal Metabolic Zonation of the Liver

Abstract

The metabolic functions of the liver are spatially organized in a phenomenon called zonation, linked to the differential exposure of portal and central hepatocytes to nutrient-rich blood. The mTORC1 signaling pathway controls cellular metabolism in response to nutrients and insulin fluctuations. Here we show that simultaneous genetic activation of nutrient and hormone signaling to mTORC1 in hepatocytes results in impaired establishment of postnatal metabolic and zonal identity of hepatocytes. Mutant hepatocytes fail to upregulate postnatally the expression of Frizzled receptors 1 and 8, and show reduced Wnt/β-catenin activation. This defect, alongside diminished paracrine Wnt2 ligand expression by endothelial cells, underlies impaired postnatal maturation. Impaired zonation is recapitulated in a model of constant supply of nutrients by parenteral nutrition to piglets. Our work shows the role of hepatocyte sensing of fluctuations in nutrients and hormones for triggering a latent metabolic zonation program.

Citing Articles

Defined Diets Link Iron and α-Linolenic Acid to Cyp1b1 Regulation of Neonatal Liver Development Through Srebp Forms and LncRNA H19.

Jefcoate C, Larsen M, Song Y, Maguire M, Sheibani N Int J Mol Sci. 2025; 26(5).

PMID: 40076634 PMC: 11901102. DOI: 10.3390/ijms26052011.


Hepatic stellate cells control liver zonation, size and functions via R-spondin 3.

Sugimoto A, Saito Y, Wang G, Sun Q, Yin C, Lee K Nature. 2025; .

PMID: 40074890 DOI: 10.1038/s41586-025-08677-w.


A mild increase in nutrient signaling to mTORC1 in mice leads to parenchymal damage, myeloid inflammation and shortened lifespan.

Ortega-Molina A, Lebrero-Fernandez C, Sanz A, Calvo-Rubio M, Deleyto-Seldas N, de Prado-Rivas L Nat Aging. 2024; 4(8):1102-1120.

PMID: 38849535 PMC: 11333293. DOI: 10.1038/s43587-024-00635-x.


HSDL2 links nutritional cues to bile acid and cholesterol homeostasis.

Samson N, Bosoi C, Roy C, Turcotte L, Tribouillard L, Mouchiroud M Sci Adv. 2024; 10(22):eadk9681.

PMID: 38820148 PMC: 11141617. DOI: 10.1126/sciadv.adk9681.

References
1.
Yang J, Mowry L, Nejak-Bowen K, Okabe H, Diegel C, Lang R . β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation!. Hepatology. 2014; 60(3):964-76. PMC: 4139486. DOI: 10.1002/hep.27082. View

2.
Braeuning A, Ittrich C, Kohle C, Hailfinger S, Bonin M, Buchmann A . Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006; 273(22):5051-61. DOI: 10.1111/j.1742-4658.2006.05503.x. View

3.
De La Calle Arregui C, Plata-Gomez A, Deleyto-Seldas N, Garcia F, Ortega-Molina A, Abril-Garrido J . Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling. Nat Commun. 2021; 12(1):3660. PMC: 8209044. DOI: 10.1038/s41467-021-23857-8. View

4.
Tee A, Manning B, Roux P, Cantley L, Blenis J . Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003; 13(15):1259-68. DOI: 10.1016/s0960-9822(03)00506-2. View

5.
Bahar Halpern K, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M . Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 2017; 542(7641):352-356. PMC: 5321580. DOI: 10.1038/nature21065. View