» Articles » PMID: 38478519

MIS-Net: A Deep Learning-based Multi-class Segmentation Model for CT Images

Overview
Journal PLoS One
Date 2024 Mar 13
PMID 38478519
Authors
Affiliations
Soon will be listed here.
Abstract

The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.

References
1.
Ma J, Wang Y, An X, Ge C, Yu Z, Chen J . Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation. Med Phys. 2020; 48(3):1197-1210. DOI: 10.1002/mp.14676. View

2.
Guan X, Yang G, Ye J, Yang W, Xu X, Jiang W . 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC Med Imaging. 2022; 22(1):6. PMC: 8734251. DOI: 10.1186/s12880-021-00728-8. View

3.
Pan S, Chang C, Wang T, Wynne J, Hu M, Lei Y . Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Med Phys. 2022; 50(5):3027-3038. PMC: 10175083. DOI: 10.1002/mp.16135. View

4.
Shelhamer E, Long J, Darrell T . Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2016; 39(4):640-651. DOI: 10.1109/TPAMI.2016.2572683. View

5.
Zhou Z, Siddiquee M, Tajbakhsh N, Liang J . UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2020; 11045:3-11. PMC: 7329239. DOI: 10.1007/978-3-030-00889-5_1. View