6.
Soria J, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee K
. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2017; 378(2):113-125.
DOI: 10.1056/NEJMoa1713137.
View
7.
Zhou C, Wu Y, Chen G, Feng J, Liu X, Wang C
. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011; 12(8):735-42.
DOI: 10.1016/S1470-2045(11)70184-X.
View
8.
Lian B, Kawasaki T, Kano N, Ori D, Ikegawa M, Isotani A
. Regulation of expression by single CpG methylation in downstream of transcription initiation site. iScience. 2022; 25(4):104118.
PMC: 8983349.
DOI: 10.1016/j.isci.2022.104118.
View
9.
Ou S, Agarwal N, Ali S
. High MET amplification level as a resistance mechanism to osimertinib (AZD9291) in a patient that symptomatically responded to crizotinib treatment post-osimertinib progression. Lung Cancer. 2016; 98:59-61.
DOI: 10.1016/j.lungcan.2016.05.015.
View
10.
Hata A, Niederst M, Archibald H, Gomez-Caraballo M, Siddiqui F, Mulvey H
. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016; 22(3):262-9.
PMC: 4900892.
DOI: 10.1038/nm.4040.
View
11.
Yu H, Lin L, Zhang Z, Zhang H, Hu H
. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020; 5(1):209.
PMC: 7506548.
DOI: 10.1038/s41392-020-00312-6.
View
12.
Zhang Y, Wang Z, Xie W, Cai Y, Xia L, Easwaran H
. Acetylation Enhances TET2 Function in Protecting against Abnormal DNA Methylation during Oxidative Stress. Mol Cell. 2017; 65(2):323-335.
PMC: 5260804.
DOI: 10.1016/j.molcel.2016.12.013.
View
13.
Mok T, Wu Y, Thongprasert S, Yang C, Chu D, Saijo N
. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009; 361(10):947-57.
DOI: 10.1056/NEJMoa0810699.
View
14.
Baylin S, Jones P
. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011; 11(10):726-34.
PMC: 3307543.
DOI: 10.1038/nrc3130.
View
15.
Clague M, Urbe S
. Ubiquitin: same molecule, different degradation pathways. Cell. 2010; 143(5):682-5.
DOI: 10.1016/j.cell.2010.11.012.
View
16.
Shi L, Du D, Peng Y, Liu J, Long J
. The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis. 2020; 9(10):98.
PMC: 7603503.
DOI: 10.1038/s41389-020-00276-w.
View
17.
He Y, Li B, Li Z, Liu P, Wang Y, Tang Q
. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011; 333(6047):1303-7.
PMC: 3462231.
DOI: 10.1126/science.1210944.
View
18.
Xu L, Xu B, Wang J, Gao Y, He X, Xie T
. Recent advances of novel fourth generation EGFR inhibitors in overcoming C797S mutation of lung cancer therapy. Eur J Med Chem. 2022; 245(Pt 1):114900.
DOI: 10.1016/j.ejmech.2022.114900.
View
19.
Huang Y, Rao A
. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet. 2014; 30(10):464-74.
PMC: 4337960.
DOI: 10.1016/j.tig.2014.07.005.
View
20.
Lv L, Wang Q, Xu Y, Tsao L, Nakagawa T, Guo H
. Vpr Targets TET2 for Degradation by CRL4 E3 Ligase to Sustain IL-6 Expression and Enhance HIV-1 Replication. Mol Cell. 2018; 70(5):961-970.e5.
PMC: 6071318.
DOI: 10.1016/j.molcel.2018.05.007.
View