Systems Level Analysis of Time and Stimuli Specific Signaling Through PKA
Overview
Authors
Affiliations
It is well known that eukaryotic cells create gradients of cAMP across space and time to regulate the cAMP dependent protein kinase (PKA) and, in turn, growth and metabolism. However, it is unclear how PKA responds to different concentrations of cAMP. Here, to address this question, we examine PKA signaling in in different conditions, timepoints, and concentrations of the chemical inhibitor 1-NM-PP1, using phosphoproteomics. These experiments show that there are numerous proteins that are only phosphorylated when cAMP and PKA activity are at/near their maximum level, while other proteins are phosphorylated even when cAMP levels and PKA activity are low. The data also show that PKA drives cells into distinct growth states by acting on proteins with different thresholds for phosphorylation in different conditions. Analysis of the sequences surrounding the 118 PKA-dependent phosphosites suggests that the phosphorylation thresholds are set, at least in part, by the affinity of PKA for each site.
Eukaryotic cell size regulation and its implications for cellular function and dysfunction.
Chadha Y, Khurana A, Schmoller K Physiol Rev. 2024; 104(4):1679-1717.
PMID: 38900644 PMC: 11495193. DOI: 10.1152/physrev.00046.2023.
Using the AKAR3-EV biosensor to assess Sch9p- and PKA-signalling in budding yeast.
Botman D, Kanagasabapathi S, Savakis P, Teusink B FEMS Yeast Res. 2023; 23.
PMID: 37173282 PMC: 10237333. DOI: 10.1093/femsyr/foad029.