6.
Tosi M
. Innate immune responses to infection. J Allergy Clin Immunol. 2005; 116(2):241-9.
DOI: 10.1016/j.jaci.2005.05.036.
View
7.
Venkatesh A, Gil C, Fuentes M, LaBaer J, Srivastava S
. A Perspective on Proteomics of Infectious Diseases. Proteomics Clin Appl. 2017; 12(4):e1700139.
DOI: 10.1002/prca.201700139.
View
8.
Hou C, Lauro M, Grimes C
. Redefining the Defensive Line: Critical Components of the Innate Immune System. ACS Infect Dis. 2016; 2(11):746-748.
PMC: 5815512.
DOI: 10.1021/acsinfecdis.6b00174.
View
9.
Sperk M, van Domselaar R, Rodriguez J, Mikaeloff F, Vinhas B, Saccon E
. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. J Proteome Res. 2020; 19(11):4259-4274.
PMC: 7640957.
DOI: 10.1021/acs.jproteome.0c00380.
View
10.
Reynolds J, Mahajan S, Aalinkeel R, Nair B, Sykes D, Agosto-Mujica A
. Modulation of the proteome of peripheral blood mononuclear cells from HIV-1-infected patients by drugs of abuse. J Clin Immunol. 2009; 29(5):646-56.
PMC: 2828154.
DOI: 10.1007/s10875-009-9309-5.
View
11.
Melendez L, Colon K, Rivera L, Rodriguez-Franco E, Toro-Nieves D
. Proteomic analysis of HIV-infected macrophages. J Neuroimmune Pharmacol. 2010; 6(1):89-106.
PMC: 3028070.
DOI: 10.1007/s11481-010-9253-4.
View
12.
Arnold K, Burgener A, Birse K, Romas L, Dunphy L, Shahabi K
. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells. Mucosal Immunol. 2015; 9(1):194-205.
DOI: 10.1038/mi.2015.51.
View
13.
Ubaida-Mohien C, Lamberty B, Dickens A, Mielke M, Marcotte T, Sacktor N
. Modifications in acute phase and complement systems predict shifts in cognitive status of HIV-infected patients. AIDS. 2017; 31(10):1365-1378.
PMC: 5501712.
DOI: 10.1097/QAD.0000000000001503.
View
14.
Guha D, Lorenz D, Misra V, Chettimada S, Morgello S, Gabuzda D
. Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. J Neuroinflammation. 2019; 16(1):254.
PMC: 6896665.
DOI: 10.1186/s12974-019-1617-y.
View
15.
Yu S, Li X, Xin Z, Sun L, Shi J
. Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Front Immunol. 2022; 13:923387.
PMC: 9530739.
DOI: 10.3389/fimmu.2022.923387.
View
16.
Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C
. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell. 2020; 182(1):59-72.e15.
PMC: 7254001.
DOI: 10.1016/j.cell.2020.05.032.
View
17.
Banu S, Nagaraj R, Idris M
. A proteomic perspective and involvement of cytokines in SARS-CoV-2 infection. PLoS One. 2023; 18(1):e0279998.
PMC: 9821788.
DOI: 10.1371/journal.pone.0279998.
View
18.
Alghanem B, Mansour F, Shaibah H, Almuhalhil K, Almourfi F, Alamri H
. Quantitative proteomics analysis of COVID-19 patients: Fetuin-A and tetranectin as potential modulators of innate immune responses. Heliyon. 2023; 9(4):e15224.
PMC: 10082967.
DOI: 10.1016/j.heliyon.2023.e15224.
View
19.
Li J, Guo M, Tian X, Wang X, Yang X, Wu P
. Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis. Med. 2020; 2(1):99-112.e7.
PMC: 7373048.
DOI: 10.1016/j.medj.2020.07.002.
View
20.
Zoued A, Zhang H, Zhang T, Giorgio R, Kuehl C, Fakoya B
. Proteomic analysis of the host-pathogen interface in experimental cholera. Nat Chem Biol. 2021; 17(11):1199-1208.
PMC: 11905963.
DOI: 10.1038/s41589-021-00894-4.
View