6.
Mohanty B, Mahanty A, Ganguly S, Mitra T, Karunakaran D, Anandan R
. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019; 293:561-570.
DOI: 10.1016/j.foodchem.2017.11.039.
View
7.
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L
. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit Rev Food Sci Nutr. 2022; 63(26):7896-7944.
DOI: 10.1080/10408398.2022.2052261.
View
8.
Bhullar K, Nael M, Elokely K, Drews S, Wu J
. Structurally Modified Bioactive Peptide Inhibits SARS-CoV-2 Lentiviral Particles Expression. Pharmaceutics. 2022; 14(10).
PMC: 9607082.
DOI: 10.3390/pharmaceutics14102045.
View
9.
Yadav R, Hasan S, Mahato S, Celik I, Mary Y, Kumar A
. Molecular docking, DFT analysis, and dynamics simulation of natural bioactive compounds targeting ACE2 and TMPRSS2 dual binding sites of spike protein of SARS CoV-2. J Mol Liq. 2021; 342:116942.
PMC: 8267125.
DOI: 10.1016/j.molliq.2021.116942.
View
10.
Nielsen S, Purup S, Larsen L
. Effect of Casein Hydrolysates on Intestinal Cell Migration and Their Peptide Profiles by LC-ESI/MS/MS. Foods. 2019; 8(3).
PMC: 6462906.
DOI: 10.3390/foods8030091.
View
11.
Ece A
. Computer-aided drug design. BMC Chem. 2023; 17(1):26.
PMC: 10039585.
DOI: 10.1186/s13065-023-00939-w.
View
12.
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J, Turner A
. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020; 126(10):1456-1474.
PMC: 7188049.
DOI: 10.1161/CIRCRESAHA.120.317015.
View
13.
Panyayai T, Ngamphiw C, Tongsima S, Mhuantong W, Limsripraphan W, Choowongkomon K
. FeptideDB: A web application for new bioactive peptides from food protein. Heliyon. 2019; 5(7):e02076.
PMC: 6656964.
DOI: 10.1016/j.heliyon.2019.e02076.
View
14.
Shapira T, Monreal I, Dion S, Buchholz D, Imbiakha B, Olmstead A
. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature. 2022; 605(7909):340-348.
PMC: 9095466.
DOI: 10.1038/s41586-022-04661-w.
View
15.
Deng Z, Yang Z, Peng J
. Role of bioactive peptides derived from food proteins in programmed cell death to treat inflammatory diseases and cancer. Crit Rev Food Sci Nutr. 2021; 63(19):3664-3682.
DOI: 10.1080/10408398.2021.1992606.
View
16.
Wang G, Yang M, Duan Z, Liu F, Jin L, Long C
. Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models. Cell Res. 2020; 31(1):17-24.
PMC: 7705431.
DOI: 10.1038/s41422-020-00450-0.
View
17.
Gopinath N
. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic. Process Biochem. 2021; 110:94-99.
PMC: 8330135.
DOI: 10.1016/j.procbio.2021.08.001.
View
18.
Yuan S, Gao X, Tang K, Cai J, Hu M, Luo P
. Targeting papain-like protease for broad-spectrum coronavirus inhibition. Protein Cell. 2022; 13(12):940-953.
PMC: 8983325.
DOI: 10.1007/s13238-022-00909-3.
View
19.
Pandya A, Patravale V
. Computational avenues in oral protein and peptide therapeutics. Drug Discov Today. 2021; 26(6):1510-1520.
DOI: 10.1016/j.drudis.2021.03.003.
View
20.
Eberle R, Gering I, Tusche M, Ostermann P, Muller L, Adams O
. Design of D-Amino Acids SARS-CoV-2 Main Protease Inhibitors Using the Cationic Peptide from Rattlesnake Venom as a Scaffold. Pharmaceuticals (Basel). 2022; 15(5).
PMC: 9146215.
DOI: 10.3390/ph15050540.
View