» Articles » PMID: 38374265

SLIDE: Significant Latent Factor Interaction Discovery and Exploration Across Biological Domains

Abstract

Modern multiomic technologies can generate deep multiscale profiles. However, differences in data modalities, multicollinearity of the data, and large numbers of irrelevant features make analyses and integration of high-dimensional omic datasets challenging. Here we present Significant Latent Factor Interaction Discovery and Exploration (SLIDE), a first-in-class interpretable machine learning technique for identifying significant interacting latent factors underlying outcomes of interest from high-dimensional omic datasets. SLIDE makes no assumptions regarding data-generating mechanisms, comes with theoretical guarantees regarding identifiability of the latent factors/corresponding inference, and has rigorous false discovery rate control. Using SLIDE on single-cell and spatial omic datasets, we uncovered significant interacting latent factors underlying a range of molecular, cellular and organismal phenotypes. SLIDE outperforms/performs at least as well as a wide range of state-of-the-art approaches, including other latent factor approaches. More importantly, it provides biological inference beyond prediction that other methods do not afford. Thus, SLIDE is a versatile engine for biological discovery from modern multiomic datasets.

Citing Articles

Single-cell genomics and spatial transcriptomics in islet transplantation for diabetes treatment: advancing towards personalized therapies.

Mou L, Wang T, Chen Y, Luo Z, Wang X, Pu Z Front Immunol. 2025; 16:1554876.

PMID: 40051625 PMC: 11882877. DOI: 10.3389/fimmu.2025.1554876.


Spatial cytokine microniches direct T helper cell pathways that drive allergic asthma.

Nat Immunol. 2024; 25(11):1999-2000.

PMID: 39415053 DOI: 10.1038/s41590-024-01987-7.


Spatial microniches of IL-2 combine with IL-10 to drive lung migratory T2 cells in response to inhaled allergen.

He K, Xiao H, MacDonald W, Mehta I, Kishore A, Vincent A Nat Immunol. 2024; 25(11):2124-2139.

PMID: 39394532 DOI: 10.1038/s41590-024-01986-8.


Network modeling links kidney developmental programs and the cancer type-specificity of VHL mutations.

Dong X, Zhang D, Zhang X, Liu Y, Liu Y NPJ Syst Biol Appl. 2024; 10(1):114.

PMID: 39362887 PMC: 11449910. DOI: 10.1038/s41540-024-00445-2.


Interpretable machine learning uncovers epithelial transcriptional rewiring and a role for Gelsolin in COPD.

Sui J, Xiao H, Mbaekwe U, Ting N, Murday K, Hu Q JCI Insight. 2024; 9(21).

PMID: 39352744 PMC: 11601586. DOI: 10.1172/jci.insight.180239.


References
1.
Lu L, Das J, Grace P, Fortune S, Restrepo B, Alter G . Antibody Fc Glycosylation Discriminates Between Latent and Active Tuberculosis. J Infect Dis. 2020; 222(12):2093-2102. PMC: 7661770. DOI: 10.1093/infdis/jiz643. View

2.
Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T . Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016; 186(10):2650-64. PMC: 5222985. DOI: 10.1016/j.ajpath.2016.06.020. View

3.
Zhang M, Eichhorn S, Zingg B, Yao Z, Cotter K, Zeng H . Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature. 2021; 598(7879):137-143. PMC: 8494645. DOI: 10.1038/s41586-021-03705-x. View

4.
Altin J, Daley S, Howitt J, Rickards H, Batkin A, Horikawa K . Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4+ T cells. Proc Natl Acad Sci U S A. 2014; 111(6):2067-74. PMC: 3926078. DOI: 10.1073/pnas.1322739111. View

5.
Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni J . MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020; 21(1):111. PMC: 7212577. DOI: 10.1186/s13059-020-02015-1. View