6.
Hobart J, Riazi A, Lamping D, Fitzpatrick R, Thompson A
. Measuring the impact of MS on walking ability: the 12-Item MS Walking Scale (MSWS-12). Neurology. 2003; 60(1):31-6.
DOI: 10.1212/wnl.60.1.31.
View
7.
Wang W, Adamczyk P
. Analyzing Gait in the Real World Using Wearable Movement Sensors and Frequently Repeated Movement Paths. Sensors (Basel). 2019; 19(8).
PMC: 6515355.
DOI: 10.3390/s19081925.
View
8.
Coote S, Comber L, Quinn G, Santoyo-Medina C, Kalron A, Gunn H
. Falls in People with Multiple Sclerosis: Risk Identification, Intervention, and Future Directions. Int J MS Care. 2021; 22(6):247-255.
PMC: 7780704.
DOI: 10.7224/1537-2073.2020-014.
View
9.
Ullrich M, Mucke A, Kuderle A, Roth N, Gladow T, Gabner H
. Detection of Unsupervised Standardized Gait Tests From Real-World Inertial Sensor Data in Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng. 2021; 29:2103-2111.
DOI: 10.1109/TNSRE.2021.3119390.
View
10.
Tulipani L, Meyer B, Allen D, Solomon A, McGinnis R
. Evaluation of unsupervised 30-second chair stand test performance assessed by wearable sensors to predict fall status in multiple sclerosis. Gait Posture. 2022; 94:19-25.
PMC: 9086135.
DOI: 10.1016/j.gaitpost.2022.02.016.
View
11.
Meyer B, Tulipani L, Gurchiek R, Allen D, Solomon A, Cheney N
. Open-source dataset reveals relationship between walking bout duration and fall risk classification performance in persons with multiple sclerosis. PLOS Digit Health. 2023; 1(10):e0000120.
PMC: 9931255.
DOI: 10.1371/journal.pdig.0000120.
View
12.
Monaghan P, Monaghan A, Hooyman A, Fling B, Huisinga J, Peterson D
. Using the Instrumented Sway System (ISway) to Identify and Compare Balance Domain Deficits in People With Multiple Sclerosis. Arch Phys Med Rehabil. 2023; 104(9):1456-1464.
PMC: 10524722.
DOI: 10.1016/j.apmr.2023.02.018.
View
13.
Meyer B, Cohen J, Donahue N, Fox S, OLeary A, Brown A
. Chest-Based Wearables and Individualized Distributions for Assessing Postural Sway in Persons With Multiple Sclerosis. IEEE Trans Neural Syst Rehabil Eng. 2023; 31:2132-2139.
PMC: 10408383.
DOI: 10.1109/TNSRE.2023.3267807.
View
14.
Swanenburg J, de Bruin E, Uebelhart D, Mulder T
. Falls prediction in elderly people: a 1-year prospective study. Gait Posture. 2010; 31(3):317-21.
DOI: 10.1016/j.gaitpost.2009.11.013.
View
15.
Carpinella I, Anastasi D, Gervasoni E, Di Giovanni R, Tacchino A, Brichetto G
. Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice. Sensors (Basel). 2022; 22(23).
PMC: 9736931.
DOI: 10.3390/s22239558.
View
16.
Cameron M, Nilsagard Y
. Balance, gait, and falls in multiple sclerosis. Handb Clin Neurol. 2018; 159:237-250.
DOI: 10.1016/B978-0-444-63916-5.00015-X.
View
17.
Tulipani L, Meyer B, Fox S, Solomon A, McGinnis R
. The Sit-to-Stand Transition as a Biomarker for Impairment: Comparison of Instrumented 30-Second Chair Stand Test and Daily Life Transitions in Multiple Sclerosis. IEEE Trans Neural Syst Rehabil Eng. 2022; 30:1213-1222.
PMC: 9204833.
DOI: 10.1109/TNSRE.2022.3169962.
View
18.
Hadamus A, Blazkiewicz M, Kowalska A, Wydra K, Grabowicz M, Lukowicz M
. Nonlinear and Linear Measures in the Differentiation of Postural Control in Patients after Total Hip or Knee Replacement and Healthy Controls. Diagnostics (Basel). 2022; 12(7).
PMC: 9318992.
DOI: 10.3390/diagnostics12071595.
View
19.
Kedziorek J, Blazkiewicz M
. Nonlinear Measures to Evaluate Upright Postural Stability: A Systematic Review. Entropy (Basel). 2020; 22(12).
PMC: 7760950.
DOI: 10.3390/e22121357.
View
20.
Chen B, Liu P, Xiao F, Liu Z, Wang Y
. Review of the Upright Balance Assessment Based on the Force Plate. Int J Environ Res Public Health. 2021; 18(5).
PMC: 7967421.
DOI: 10.3390/ijerph18052696.
View