6.
Ito S, Nagasawa T, Abe M, Mori T
. Strain vessel hypothesis: a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk. Hypertens Res. 2009; 32(2):115-21.
DOI: 10.1038/hr.2008.27.
View
7.
Ospina-Tascon G, Neves A, Occhipinti G, Donadello K, Buchele G, Simion D
. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010; 36(6):949-55.
DOI: 10.1007/s00134-010-1843-3.
View
8.
Harris A, Ciulla T, Chung H, Martin B
. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol. 1998; 116(11):1491-5.
DOI: 10.1001/archopht.116.11.1491.
View
9.
Nagaoka T, Sakamoto T, Mori F, Sato E, Yoshida A
. The effect of nitric oxide on retinal blood flow during hypoxia in cats. Invest Ophthalmol Vis Sci. 2002; 43(9):3037-44.
View
10.
Riva C, Hero M, Titze P, Petrig B
. Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol. 1997; 235(10):618-26.
DOI: 10.1007/BF00946937.
View
11.
Ergin B, Kapucu A, Demirci-Tansel C, Ince C
. The renal microcirculation in sepsis. Nephrol Dial Transplant. 2014; 30(2):169-77.
DOI: 10.1093/ndt/gfu105.
View
12.
Delaey C, Van de Voorde J
. Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res. 2000; 32(6):249-56.
DOI: 10.1159/000055622.
View
13.
Hernandez G, Luengo C, Bruhn A, Kattan E, Friedman G, Ospina-Tascon G
. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care. 2015; 4:30.
PMC: 4273696.
DOI: 10.1186/s13613-014-0030-z.
View
14.
Komatsu T, Shiba T, Watanabe K, Sakuma K, Aimoto M, Nagasawa Y
. Real-Time Evaluation of Regional Arterial Stiffening, Resistance, and Ocular Circulation During Systemic Administration of Adrenaline in White Rabbits. Transl Vis Sci Technol. 2021; 10(9):11.
PMC: 8354059.
DOI: 10.1167/tvst.10.9.11.
View
15.
Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H
. Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp Eye Res. 1995; 60(4):373-83.
DOI: 10.1016/s0014-4835(05)80094-6.
View
16.
Takahashi H, Sugiyama T, Tokushige H, Maeno T, Nakazawa T, Ikeda T
. Comparison of CCD-equipped laser speckle flowgraphy with hydrogen gas clearance method in the measurement of optic nerve head microcirculation in rabbits. Exp Eye Res. 2012; 108:10-5.
DOI: 10.1016/j.exer.2012.12.003.
View
17.
Luft N, Wozniak P, Aschinger G, Fondi K, Bata A, Werkmeister R
. Measurements of Retinal Perfusion Using Laser Speckle Flowgraphy and Doppler Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2016; 57(13):5417-5425.
DOI: 10.1167/iovs.16-19896.
View
18.
Massey M, Hou P, Filbin M, Wang H, Ngo L, Huang D
. Microcirculatory perfusion disturbances in septic shock: results from the ProCESS trial. Crit Care. 2018; 22(1):308.
PMC: 6245723.
DOI: 10.1186/s13054-018-2240-5.
View
19.
Nagahara M, Tamaki Y, Araie M, Fujii H
. [Measurements of blood flow velocity in human retinal veins using laser speckle flowgraphy system]. Nippon Ganka Gakkai Zasshi. 1997; 101(2):173-9.
View
20.
Alnawaiseh M, Ertmer C, Seidel L, Arnemann P, Lahme L, Kampmeier T
. Feasibility of optical coherence tomography angiography to assess changes in retinal microcirculation in ovine haemorrhagic shock. Crit Care. 2018; 22(1):138.
PMC: 5975442.
DOI: 10.1186/s13054-018-2056-3.
View