» Articles » PMID: 38286996

Effect of Solid-electrolyte Pellet Density on Failure of Solid-state Batteries

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Jan 29
PMID 38286996
Authors
Affiliations
Soon will be listed here.
Abstract

Despite the potentially higher energy density and improved safety of solid-state batteries (SSBs) relative to Li-ion batteries, failure due to Li-filament penetration of the solid electrolyte and subsequent short circuit remains a critical issue. Herein, we show that Li-filament growth is suppressed in solid-electrolyte pellets with a relative density beyond ~95%. Below this threshold value, however, the battery shorts more easily as the density increases due to faster Li-filament growth within the percolating pores in the pellet. The microstructural properties (e.g., pore size, connectivity, porosity, and tortuosity) of [Formula: see text] with various relative densities are quantified using focused ion beam-scanning electron microscopy tomography and permeability tests. Furthermore, modeling results provide details on the Li-filament growth inside pores ranging from 0.2 to 2 μm in size. Our findings improve the understanding of the failure modes of SSBs and provide guidelines for the design of dendrite-free SSBs.

Citing Articles

Slurry Synthesis and Thin-Film Fabrication Toward Production of Li₂O-B₂O₃-Al₂O₃-Based Multilayer Oxide Solid-State Batteries for Internet of Things Applications.

Park J, Choi J, Seo J, Nam W, Lee S, Cho S Micromachines (Basel). 2025; 16(1.

PMID: 39858694 PMC: 11767993. DOI: 10.3390/mi16010039.


Engineering Stable Decomposition Products on Cathode Surfaces to Enable High Voltage All-Solid-State Batteries.

Qian L, Huang Y, Dean C, Kochetkov I, Singh B, Nazar L Angew Chem Int Ed Engl. 2024; 64(2):e202413591.

PMID: 39531248 PMC: 11720407. DOI: 10.1002/anie.202413591.

References
1.
Chen Y, Wang Z, Li X, Yao X, Wang C, Li Y . Li metal deposition and stripping in a solid-state battery via Coble creep. Nature. 2020; 578(7794):251-255. DOI: 10.1038/s41586-020-1972-y. View

2.
Famprikis T, Canepa P, Dawson J, Islam M, Masquelier C . Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019; 18(12):1278-1291. DOI: 10.1038/s41563-019-0431-3. View

3.
Wang Y, Richards W, Ong S, Miara L, Kim J, Mo Y . Design principles for solid-state lithium superionic conductors. Nat Mater. 2015; 14(10):1026-31. DOI: 10.1038/nmat4369. View

4.
Golozar M, Paolella A, Demers H, Savoie S, Girard G, Delaporte N . Direct observation of lithium metal dendrites with ceramic solid electrolyte. Sci Rep. 2020; 10(1):18410. PMC: 7592047. DOI: 10.1038/s41598-020-75456-0. View

5.
Tsai C, Roddatis V, Chandran C, Ma Q, Uhlenbruck S, Bram M . Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. ACS Appl Mater Interfaces. 2016; 8(16):10617-26. DOI: 10.1021/acsami.6b00831. View