» Articles » PMID: 38277691

Intraepithelial Lymphocytes of the Intestine

Overview
Date 2024 Jan 26
PMID 38277691
Authors
Affiliations
Soon will be listed here.
Abstract

The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.

Citing Articles

Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease.

Hada A, Xiao Z Pathogens. 2025; 14(2).

PMID: 40005486 PMC: 11858322. DOI: 10.3390/pathogens14020109.


Erythropoietin supplementation induces dysbiosis of the gut microbiota and impacts mucosal immunity in a non-diseased mouse model.

Sarrabayrouse G, Joulain C, Bessoles S, Chiron A, Abina A, Hacein-Bey-Abina S Front Immunol. 2025; 15:1465410.

PMID: 39916952 PMC: 11798978. DOI: 10.3389/fimmu.2024.1465410.


Single-cell analyses of intestinal epithelium reveal the dysregulation of gut immune microenvironment in systemic lupus erythematosus.

Wang Q, Wu Y, Ouyang L, Min X, Zheng M, Gao L J Transl Med. 2025; 23(1):118.

PMID: 39871323 PMC: 11773722. DOI: 10.1186/s12967-025-06147-5.


Distinct CD8 T-cell types Associated with COVID-19 Severity in Unvaccinated HLA-A2 Patients.

Masuda K, Iketani S, Liu L, Huang J, Qiao Y, Shah J bioRxiv. 2025; .

PMID: 39868279 PMC: 11761488. DOI: 10.1101/2025.01.12.632164.


Chick Early Amniotic Fluid Alleviates Dextran-Sulfate-Sodium-Induced Colitis in Mice via T-Cell Receptor Pathway.

Chen F, Zhao Y, Dai Y, Sun N, Gao X, Yin J Antioxidants (Basel). 2025; 14(1).

PMID: 39857385 PMC: 11762673. DOI: 10.3390/antiox14010051.


References
1.
London M, Bilate A, Castro T, Sujino T, Mucida D . Stepwise chromatin and transcriptional acquisition of an intraepithelial lymphocyte program. Nat Immunol. 2021; 22(4):449-459. PMC: 8251700. DOI: 10.1038/s41590-021-00883-8. View

2.
Bilate A, Bousbaine D, Mesin L, Agudelo M, Leube J, Kratzert A . Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor. Sci Immunol. 2017; 1(2):eaaf7471. PMC: 6296461. DOI: 10.1126/sciimmunol.aaf7471. View

3.
Torow N, Yu K, Hassani K, Freitag J, Schulz O, Basic M . Active suppression of intestinal CD4(+)TCRαβ(+) T-lymphocyte maturation during the postnatal period. Nat Commun. 2015; 6:7725. PMC: 4518322. DOI: 10.1038/ncomms8725. View

4.
Sethna Z, Elhanati Y, Dudgeon C, Callan Jr C, Levine A, Mora T . Insights into immune system development and function from mouse T-cell repertoires. Proc Natl Acad Sci U S A. 2017; 114(9):2253-2258. PMC: 5338539. DOI: 10.1073/pnas.1700241114. View

5.
Masopust D, Jiang J, Shen H, Lefrancois L . Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus infection. J Immunol. 2001; 166(4):2348-56. DOI: 10.4049/jimmunol.166.4.2348. View