6.
Liu L, Kong F
. In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption. Int J Biol Macromol. 2019; 137:1278-1285.
DOI: 10.1016/j.ijbiomac.2019.06.194.
View
7.
Wu J, Ma G
. Recent Studies of Pickering Emulsions: Particles Make the Difference. Small. 2016; 12(34):4633-48.
DOI: 10.1002/smll.201600877.
View
8.
Almeida J, Losada-Barreiro S, Costa M, Paiva-Martins F, Bravo-Diaz C, Romsted L
. Interfacial Concentrations of Hydroxytyrosol and Its Lipophilic Esters in Intact Olive Oil-in-Water Emulsions: Effects of Antioxidant Hydrophobicity, Surfactant Concentration, and the Oil-to-Water Ratio on the Oxidative Stability of the Emulsions. J Agric Food Chem. 2016; 64(25):5274-83.
DOI: 10.1021/acs.jafc.6b01468.
View
9.
Prabsangob N, Benjakul S
. Effect of tea catechin derivatives on stability of soybean oil/tea seed oil blend and oxidative stability of fried fish crackers during storage. Food Sci Biotechnol. 2019; 28(3):679-689.
PMC: 6484051.
DOI: 10.1007/s10068-018-0515-x.
View
10.
Zeng X, Sheng Z, Li X, Fan X, Jiang W
. In vitro studies on the interactions of blood lipid level-related biological molecules with gallic acid and tannic acid. J Sci Food Agric. 2019; 99(15):6882-6892.
DOI: 10.1002/jsfa.9974.
View
11.
Liebscher J, Mrowczynski R, Scheidt H, Filip C, Hadade N, Turcu R
. Structure of polydopamine: a never-ending story?. Langmuir. 2013; 29(33):10539-48.
DOI: 10.1021/la4020288.
View
12.
Liu D, Lopez-Sanchez P, Martinez-Sanz M, Gilbert E, Gidley M
. Adsorption isotherm studies on the interaction between polyphenols and apple cell walls: Effects of variety, heating and drying. Food Chem. 2019; 282:58-66.
DOI: 10.1016/j.foodchem.2018.12.098.
View
13.
Phan A, Netzel G, Wang D, Flanagan B, DArcy B, Gidley M
. Binding of dietary polyphenols to cellulose: structural and nutritional aspects. Food Chem. 2014; 171:388-96.
DOI: 10.1016/j.foodchem.2014.08.118.
View
14.
Mortada W, Kenawy I, El-Reash Y, Mousa A
. Microwave assisted modification of cellulose by gallic acid and its application for removal of aluminium from real samples. Int J Biol Macromol. 2017; 101:490-501.
DOI: 10.1016/j.ijbiomac.2017.03.027.
View
15.
DeLoid G, Sohal I, Lorente L, Molina R, Pyrgiotakis G, Stevanovic A
. Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose. ACS Nano. 2018; 12(7):6469-6479.
PMC: 6535802.
DOI: 10.1021/acsnano.8b03074.
View
16.
Mackie A, Gourcy S, Rigby N, Moffat J, Capron I, Bajka B
. The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. Nanoscale. 2019; 11(6):2991-2998.
PMC: 6371889.
DOI: 10.1039/c8nr05860a.
View
17.
Gu C, Suleria H, Dunshea F, Howell K
. Dietary Lipids Influence Bioaccessibility of Polyphenols from Black Carrots and Affect Microbial Diversity under Simulated Gastrointestinal Digestion. Antioxidants (Basel). 2020; 9(8).
PMC: 7464840.
DOI: 10.3390/antiox9080762.
View
18.
Le H, Loveday S, Singh H, Sarkar A
. Gastrointestinal digestion of Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Release of short-chain fatty acids. Food Chem. 2020; 320:126650.
DOI: 10.1016/j.foodchem.2020.126650.
View
19.
Shahbazi M, Jager H, Ettelaie R
. Dual-Grafting of Microcrystalline Cellulose by Tea Polyphenols and Cationic ε-Polylysine to Tailor a Structured Antimicrobial Soy-Based Emulsion for 3D Printing. ACS Appl Mater Interfaces. 2022; 14(18):21392-21405.
PMC: 9100494.
DOI: 10.1021/acsami.1c19430.
View
20.
Le Bourvellec C, Bouchet B, Renard C
. Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides. Biochim Biophys Acta. 2005; 1725(1):10-8.
DOI: 10.1016/j.bbagen.2005.06.004.
View