» Articles » PMID: 38248162

Control of the Von Neumann Entropy for an Open Two-Qubit System Using Coherent and Incoherent Drives

Overview
Journal Entropy (Basel)
Publisher MDPI
Date 2024 Jan 22
PMID 38248162
Authors
Affiliations
Soon will be listed here.
Abstract

This article is devoted to developing an approach for manipulating the von Neumann entropy S(ρ(t)) of an open two-qubit system with coherent control and incoherent control inducing time-dependent decoherence rates. The following goals are considered: (a) minimizing or maximizing the final entropy S(ρ(T)); (b) steering S(ρ(T)) to a given target value; (c) steering S(ρ(T)) to a target value and satisfying the pointwise state constraint S(ρ(t))≤S¯ for a given S¯; (d) keeping S(ρ(t)) constant at a given time interval. Under the Markovian dynamics determined by a Gorini-Kossakowski-Sudarshan-Lindblad type master equation, which contains coherent and incoherent controls, one- and two-step gradient projection methods and genetic algorithm have been adapted, taking into account the specifics of the objective functionals. The corresponding numerical results are provided and discussed.

Citing Articles

Control of Overfitting with Physics.

Kozyrev S, Lopatin I, Pechen A Entropy (Basel). 2025; 26(12.

PMID: 39766719 PMC: 11675240. DOI: 10.3390/e26121090.


Correction: Morzhin, O.V.; Pechen, A.N. Control of the von Neumann Entropy for an Open Two-Qubit System Using Coherent and Incoherent Drives. 2024, , 36.

Morzhin O, Pechen A Entropy (Basel). 2024; 26(9).

PMID: 39330146 PMC: 11431316. DOI: 10.3390/e26090750.

References
1.
Muller M, Said R, Jelezko F, Calarco T, Montangero S . One decade of quantum optimal control in the chopped random basis. Rep Prog Phys. 2022; 85(7). DOI: 10.1088/1361-6633/ac723c. View

2.
Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S . Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J Magn Reson. 2005; 172(2):296-305. DOI: 10.1016/j.jmr.2004.11.004. View

3.
Koch C . Controlling open quantum systems: tools, achievements, and limitations. J Phys Condens Matter. 2016; 28(21):213001. DOI: 10.1088/0953-8984/28/21/213001. View

4.
Kallush S, Dann R, Kosloff R . Controlling the uncontrollable: Quantum control of open-system dynamics. Sci Adv. 2022; 8(44):eadd0828. PMC: 9629718. DOI: 10.1126/sciadv.add0828. View

5.
Xing Y, Wu J . Controlling the shannon entropy of quantum systems. ScientificWorldJournal. 2013; 2013:381219. PMC: 3683499. DOI: 10.1155/2013/381219. View