» Articles » PMID: 38240185

Differential Temporal Release and Lipoprotein Loading in B. Thetaiotaomicron Bacterial Extracellular Vesicles

Overview
Publisher Wiley
Date 2024 Jan 19
PMID 38240185
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial extracellular vesicles (BEVs) contribute to stress responses, quorum sensing, biofilm formation and interspecies and interkingdom communication. However, the factors that regulate their release and heterogeneity are not well understood. We set out to investigate these factors in the common gut commensal Bacteroides thetaiotaomicron by studying BEV release throughout their growth cycle. Utilising a range of methods, we demonstrate that vesicles released at different stages of growth have significantly different composition, with early vesicles enriched in specifically released outer membrane vesicles (OMVs) containing a larger proportion of lipoproteins, while late phase BEVs primarily contain lytic vesicles with enrichment of cytoplasmic proteins. Furthermore, we demonstrate that lipoproteins containing a negatively charged signal peptide are preferentially incorporated in OMVs. We use this observation to predict all Bacteroides thetaiotaomicron OMV enriched lipoproteins and analyse their function. Overall, our findings highlight the need to understand media composition and BEV release dynamics prior to functional characterisation and define the theoretical functional capacity of Bacteroides thetaiotaomicron OMVs.

Citing Articles

Opportunities and challenges of bacterial extracellular vesicles in regenerative medicine.

Guo J, Huang Z, Wang Q, Wang M, Ming Y, Chen W J Nanobiotechnology. 2025; 23(1):4.

PMID: 39754127 PMC: 11697683. DOI: 10.1186/s12951-024-02935-1.


Bacteroides Fragilis Exacerbates T2D Vascular Calcification by Secreting Extracellular Vesicles to Induce M2 Macrophages.

Chen C, Liang Z, He Y, Gao Y, Ouyang S, Wang L Adv Sci (Weinh). 2024; 12(5):e2410495.

PMID: 39665119 PMC: 11791993. DOI: 10.1002/advs.202410495.


Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells.

Razim A, Zablocka A, Schmid A, Thaler M, cerny V, Weinmayer T J Extracell Vesicles. 2024; 13(10):e70004.

PMID: 39429019 PMC: 11491762. DOI: 10.1002/jev2.70004.


The activity of the quorum sensing regulator HapR is modulated by the bacterial extracellular vesicle (BEV)-associated protein ObfA of Vibrio cholerae.

Ebenberger S, Cakar F, Chen Y, Pressler K, Eberl L, Schild S J Extracell Vesicles. 2024; 13(9):e12507.

PMID: 39252550 PMC: 11386269. DOI: 10.1002/jev2.12507.


Gut-bacteria derived membrane vesicles and host metabolic health: a narrative review.

Verbunt J, Jocken J, Blaak E, Savelkoul P, Stassen F Gut Microbes. 2024; 16(1):2359515.

PMID: 38808455 PMC: 11141482. DOI: 10.1080/19490976.2024.2359515.


References
1.
Juodeikis R, Martins C, Saalbach G, Richardson J, Koev T, Baker D . Differential temporal release and lipoprotein loading in B. thetaiotaomicron bacterial extracellular vesicles. J Extracell Vesicles. 2024; 13(1):e12406. PMC: 10797578. DOI: 10.1002/jev2.12406. View

2.
Ley R, Hamady M, Lozupone C, Turnbaugh P, Ramey R, Bircher J . Evolution of mammals and their gut microbes. Science. 2008; 320(5883):1647-51. PMC: 2649005. DOI: 10.1126/science.1155725. View

3.
Durant L, Stentz R, Noble A, Brooks J, Gicheva N, Reddi D . Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease. Microbiome. 2020; 8(1):88. PMC: 7282036. DOI: 10.1186/s40168-020-00868-z. View

4.
Sartorio M, Pardue E, Feldman M, Haurat M . Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu Rev Microbiol. 2021; 75:609-630. PMC: 8500939. DOI: 10.1146/annurev-micro-052821-031444. View

5.
McMillan H, Kuehn M . The extracellular vesicle generation paradox: a bacterial point of view. EMBO J. 2021; 40(21):e108174. PMC: 8561641. DOI: 10.15252/embj.2021108174. View