» Articles » PMID: 38224450

Target DNA-dependent Activation Mechanism of the Prokaryotic Immune System SPARTA

Overview
Specialty Biochemistry
Date 2024 Jan 15
PMID 38224450
Authors
Affiliations
Soon will be listed here.
Abstract

In both prokaryotic and eukaryotic innate immune systems, TIR domains function as NADases that degrade the key metabolite NAD+ or generate signaling molecules. Catalytic activation of TIR domains requires oligomerization, but how this is achieved varies in distinct immune systems. In the Short prokaryotic Argonaute (pAgo)/TIR-APAZ (SPARTA) immune system, TIR NADase activity is triggered upon guide RNA-mediated recognition of invading DNA by an unknown mechanism. Here, we describe cryo-EM structures of SPARTA in the inactive monomeric and target DNA-activated tetrameric states. The monomeric SPARTA structure reveals that in the absence of target DNA, a C-terminal tail of TIR-APAZ occupies the nucleic acid binding cleft formed by the pAgo and TIR-APAZ subunits, inhibiting SPARTA activation. In the active tetrameric SPARTA complex, guide RNA-mediated target DNA binding displaces the C-terminal tail and induces conformational changes in pAgo that facilitate SPARTA-SPARTA dimerization. Concurrent release and rotation of one TIR domain allow it to form a composite NADase catalytic site with the other TIR domain within the dimer, and generate a self-complementary interface that mediates cooperative tetramerization. Combined, this study provides critical insights into the structural architecture of SPARTA and the molecular mechanism underlying target DNA-dependent oligomerization and catalytic activation.

Citing Articles

Structural basis of ssDNA-guided NADase activation of prokaryotic SPARTA system.

Hu R, Guo C, Liu X, Lin Y, Yang Z, Li Z Nucleic Acids Res. 2025; 53(4).

PMID: 39997222 PMC: 11851103. DOI: 10.1093/nar/gkaf110.


Structural and mechanistic insights into the activation of a short prokaryotic argonaute system from archaeon Sulfolobus islandicus.

Dai Z, Chen Y, Guan Z, Chen X, Tan K, Yang K Nucleic Acids Res. 2025; 53(3).

PMID: 39898546 PMC: 11788926. DOI: 10.1093/nar/gkaf059.


Mechanistic basis for the allosteric activation of NADase activity in the Sir2-HerA antiphage defense system.

Zhen X, Zhou B, Liu Z, Wang X, Zhao H, Wu S Nat Commun. 2024; 15(1):9269.

PMID: 39465277 PMC: 11514289. DOI: 10.1038/s41467-024-53614-6.


Tetramerization-dependent activation of the Sir2-associated short prokaryotic Argonaute immune system.

Cui N, Zhang J, Li Z, Wei X, Wang J, Jia N Nat Commun. 2024; 15(1):8610.

PMID: 39366953 PMC: 11452484. DOI: 10.1038/s41467-024-52910-5.


Structures and functions of short argonautes.

Wang C, Shen Z, Yang X, Fu T RNA Biol. 2024; 21(1):1-7.

PMID: 39219231 PMC: 11370952. DOI: 10.1080/15476286.2024.2380948.


References
1.
Ni D, Lu X, Stahlberg H, Ekundayo B . Activation mechanism of a short argonaute-TIR prokaryotic immune system. Sci Adv. 2023; 9(29):eadh9002. PMC: 10355822. DOI: 10.1126/sciadv.adh9002. View

2.
Wan L, Essuman K, Anderson R, Sasaki Y, Monteiro F, Chung E . TIR domains of plant immune receptors are NAD-cleaving enzymes that promote cell death. Science. 2019; 365(6455):799-803. PMC: 7045805. DOI: 10.1126/science.aax1771. View

3.
Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S . Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018; 361(6408):1259-1262. PMC: 6368452. DOI: 10.1126/science.aas9129. View

4.
Shi Y, Kerry P, Nanson J, Bosanac T, Sasaki Y, Krauss R . Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol Cell. 2022; 82(9):1643-1659.e10. PMC: 9188649. DOI: 10.1016/j.molcel.2022.03.007. View

5.
Martin R, Qi T, Zhang H, Liu F, King M, Toth C . Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science. 2020; 370(6521). PMC: 7995448. DOI: 10.1126/science.abd9993. View