» Articles » PMID: 38172572

Microtubule-associated Phase Separation of MIDD1 Tunes Cell Wall Spacing in Xylem Vessels in Arabidopsis Thaliana

Overview
Journal Nat Plants
Specialties Biology
Genetics
Date 2024 Jan 3
PMID 38172572
Authors
Affiliations
Soon will be listed here.
Abstract

Properly patterned cell walls specify cellular functions in plants. Differentiating protoxylem and metaxylem vessel cells exhibit thick secondary cell walls in striped and pitted patterns, respectively. Cortical microtubules are arranged in distinct patterns to direct cell wall deposition. The scaffold protein MIDD1 promotes microtubule depletion by interacting with ROP GTPases and KINESIN-13A in metaxylem vessels. Here we show that the phase separation of MIDD1 fine-tunes cell wall spacing in protoxylem vessels in Arabidopsis thaliana. Compared with wild-type, midd1 mutants exhibited narrower gaps and smaller pits in the secondary cell walls of protoxylem and metaxylem vessel cells, respectively. Live imaging of ectopically induced protoxylem vessels revealed that MIDD1 forms condensations along the depolymerizing microtubules, which in turn caused massive catastrophe of microtubules. The MIDD1 condensates exhibited rapid turnover and were susceptible to 1,6-hexanediol. Loss of ROP abolished the condensation of MIDD1 and resulted in narrow cell wall gaps in protoxylem vessels. These results suggest that the microtubule-associated phase separation of MIDD1 facilitates microtubule arrangement to regulate the size of gaps in secondary cell walls. This study reveals a new biological role of phase separation in the fine-tuning of cell wall patterning.

Citing Articles

Control of plasma membrane-associated actin polymerization specifies the pattern of the cell wall in xylem vessels.

Kijima S, Sasaki T, Kikushima Y, Inoue D, Sakamoto S, Kondo Y Nat Commun. 2025; 16(1):1921.

PMID: 40011437 PMC: 11865516. DOI: 10.1038/s41467-025-56866-y.


The Turing heritage for plant biology: all spots and stripes?.

Siero E, Deinum E Quant Plant Biol. 2025; 6:e1.

PMID: 39944475 PMC: 11811860. DOI: 10.1017/qpb.2024.16.


Microtubule flexibility, microtubule-based nucleation and ROP pattern co-alignment enhance protoxylem microtubule patterning.

Jacobs B, Saltini M, Molenaar J, Filion L, Deinum E Quant Plant Biol. 2025; 6:e2.

PMID: 39944474 PMC: 11811878. DOI: 10.1017/qpb.2024.17.


Plants reshape protoxylem through tubulin adjustment.

Shao Y, Sun J Plant Physiol. 2024; 196(2):681-683.

PMID: 39028842 PMC: 11444281. DOI: 10.1093/plphys/kiae376.


RHO OF PLANTS signalling and the activating ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS: specificity in cellular signal transduction in plants.

Denninger P J Exp Bot. 2024; 75(12):3685-3699.

PMID: 38683617 PMC: 11194304. DOI: 10.1093/jxb/erae196.

References
1.
Endler A, Persson S . Cellulose synthases and synthesis in Arabidopsis. Mol Plant. 2011; 4(2):199-211. DOI: 10.1093/mp/ssq079. View

2.
Paradez A, Wright A, Ehrhardt D . Microtubule cortical array organization and plant cell morphogenesis. Curr Opin Plant Biol. 2006; 9(6):571-8. DOI: 10.1016/j.pbi.2006.09.005. View

3.
Shaw S, Kamyar R, Ehrhardt D . Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science. 2003; 300(5626):1715-8. DOI: 10.1126/science.1083529. View

4.
Dixit R, Cyr R . Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell. 2004; 16(12):3274-84. PMC: 535873. DOI: 10.1105/tpc.104.026930. View

5.
Murata T, Sonobe S, Baskin T, Hyodo S, Hasezawa S, Nagata T . Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol. 2005; 7(10):961-8. DOI: 10.1038/ncb1306. View