» Articles » PMID: 38168986

Inferring Super-resolution Tissue Architecture by Integrating Spatial Transcriptomics with Histology

Abstract

Spatial transcriptomics (ST) has demonstrated enormous potential for generating intricate molecular maps of cells within tissues. Here we present iStar, a method based on hierarchical image feature extraction that integrates ST data and high-resolution histology images to predict spatial gene expression with super-resolution. Our method enhances gene expression resolution to near-single-cell levels in ST and enables gene expression prediction in tissue sections where only histology images are available.

Citing Articles

Spotiphy enables single-cell spatial whole transcriptomics across an entire section.

Yang J, Zheng Z, Jiao Y, Yu K, Bhatara S, Yang X Nat Methods. 2025; .

PMID: 40074951 DOI: 10.1038/s41592-025-02622-5.


Scaling up spatial transcriptomics for large-sized tissues: uncovering cellular-level tissue architecture beyond conventional platforms with iSCALE.

Schroeder A, Loth M, Luo C, Yao S, Yan H, Zhang D bioRxiv. 2025; .

PMID: 40060412 PMC: 11888418. DOI: 10.1101/2025.02.25.640190.


Single-cell genomics and spatial transcriptomics in islet transplantation for diabetes treatment: advancing towards personalized therapies.

Mou L, Wang T, Chen Y, Luo Z, Wang X, Pu Z Front Immunol. 2025; 16:1554876.

PMID: 40051625 PMC: 11882877. DOI: 10.3389/fimmu.2025.1554876.


Systematic inference of super-resolution cell spatial profiles from histology images.

Zhang P, Gao C, Zhang Z, Yuan Z, Zhang Q, Zhang P Nat Commun. 2025; 16(1):1838.

PMID: 39984438 PMC: 11845739. DOI: 10.1038/s41467-025-57072-6.


Benchmarking the translational potential of spatial gene expression prediction from histology.

Wang C, Chan A, Fu X, Ghazanfar S, Kim J, Patrick E Nat Commun. 2025; 16(1):1544.

PMID: 39934114 PMC: 11814321. DOI: 10.1038/s41467-025-56618-y.


References
1.
Burgess D . Spatial transcriptomics coming of age. Nat Rev Genet. 2019; 20(6):317. DOI: 10.1038/s41576-019-0129-z. View

2.
Asp M, Bergenstrahle J, Lundeberg J . Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration. Bioessays. 2020; 42(10):e1900221. DOI: 10.1002/bies.201900221. View

3.
Crosetto N, Bienko M, van Oudenaarden A . Spatially resolved transcriptomics and beyond. Nat Rev Genet. 2014; 16(1):57-66. DOI: 10.1038/nrg3832. View

4.
Moor A, Itzkovitz S . Spatial transcriptomics: paving the way for tissue-level systems biology. Curr Opin Biotechnol. 2017; 46:126-133. DOI: 10.1016/j.copbio.2017.02.004. View

5.
Hu J, Li X, Coleman K, Schroeder A, Ma N, Irwin D . SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat Methods. 2021; 18(11):1342-1351. DOI: 10.1038/s41592-021-01255-8. View