» Articles » PMID: 38162388

Bond-selective Fluorescence Imaging with Single-molecule Sensitivity

Overview
Journal Nat Photonics
Date 2024 Jan 1
PMID 38162388
Authors
Affiliations
Soon will be listed here.
Abstract

Bioimaging harnessing optical contrasts and chemical specificity is of vital importance in probing complex biology. Vibrational spectroscopy based on mid-infrared (mid-IR) excitation can reveal rich chemical information about molecular distributions. However, its full potential for bioimaging is hindered by the achievable sensitivity. Here, we report bond selective fluorescence-detected infrared-excited (BonFIRE) spectral microscopy. BonFIRE employs two-photon excitation in the mid-IR and near-IR to upconvert vibrational excitations to electronic states for fluorescence detection, thus encoding vibrational information into fluorescence. The system utilizes tuneable narrowband picosecond pulses to ensure high sensitivity, biocompatibility, and robustness for bond-selective biological interrogations over a wide spectrum of reporter molecules. We demonstrate BonFIRE spectral imaging in both fingerprint and cell-silent spectroscopic windows with single-molecule sensitivity for common fluorescent dyes. We then demonstrate BonFIRE imaging on various intracellular targets in fixed and live cells, neurons, and tissues, with promises for further vibrational multiplexing. For dynamic bioanalysis in living systems, we implement a high-frequency modulation scheme and demonstrate time-lapse BonFIRE microscopy of live HeLa cells. We expect BonFIRE to expand the bioimaging toolbox by providing a new level of bond-specific vibrational information and facilitate functional imaging and sensing for biological investigations.

Citing Articles

To label or not: the need for validation in label-free imaging.

Szulczewski J, Yesilkoy F, Ulland T, Bartels R, Millis B, Boppart S J Biomed Opt. 2024; 29(Suppl 2):S22717.

PMID: 39711795 PMC: 11660684. DOI: 10.1117/1.JBO.29.S2.S22717.


Ultrasensitive infrared spectroscopy via vibrational modulation of plasmonic scattering from a nanocavity.

Jia D, Cheng R, McNeely J, Zong H, Teng X, Xu X Sci Adv. 2024; 10(51):eadn8255.

PMID: 39705354 PMC: 11661430. DOI: 10.1126/sciadv.adn8255.


INSPIRE: Single-beam probed complementary vibrational bioimaging.

Fu P, Zhang Y, Wang S, Ye X, Wu Y, Yu M Sci Adv. 2024; 10(50):eadm7687.

PMID: 39661668 PMC: 11633736. DOI: 10.1126/sciadv.adm7687.


Surpassing the Diffraction Limit in Label-Free Optical Microscopy.

Palounek D, Vala M, Bujak L, Kopal I, Jirikova K, Shaidiuk Y ACS Photonics. 2024; 11(10):3907-3921.

PMID: 39429866 PMC: 11487630. DOI: 10.1021/acsphotonics.4c00745.


Room-Temperature Single-Molecule Infrared Imaging and Spectroscopy through Bond-Selective Fluorescence.

Wang H, Kocheril P, Yang Z, Lee D, Naji N, Du J Angew Chem Int Ed Engl. 2024; 63(52):e202413647.

PMID: 39312677 PMC: 11659037. DOI: 10.1002/anie.202413647.


References
1.
Pleitez M, Ali Khan A, Solda A, Chmyrov A, Reber J, Gasparin F . Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat Biotechnol. 2019; 38(3):293-296. DOI: 10.1038/s41587-019-0359-9. View

2.
Ma J, Pazos I, Zhang W, Culik R, Gai F . Site-specific infrared probes of proteins. Annu Rev Phys Chem. 2015; 66:357-77. PMC: 4382430. DOI: 10.1146/annurev-physchem-040214-121802. View

3.
Li Z, Aleshire K, Kuno M, Hartland G . Super-Resolution Far-Field Infrared Imaging by Photothermal Heterodyne Imaging. J Phys Chem B. 2017; 121(37):8838-8846. DOI: 10.1021/acs.jpcb.7b06065. View

4.
Schnell M, Mittal S, Falahkheirkhah K, Mittal A, Yeh K, Kenkel S . All-digital histopathology by infrared-optical hybrid microscopy. Proc Natl Acad Sci U S A. 2020; 117(7):3388-3396. PMC: 7035604. DOI: 10.1073/pnas.1912400117. View

5.
Hopt A, Neher E . Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J. 2001; 80(4):2029-36. PMC: 1301392. DOI: 10.1016/S0006-3495(01)76173-5. View