» Articles » PMID: 38160520

Simultaneous Estimation of Total Phenolic and Alkaloid Contents in the Tea Samples by Utilizing the Catechin and Caffeine Oxidation Signals Through the Square-wave Voltammetry Technique

Overview
Journal Food Chem
Date 2023 Dec 31
PMID 38160520
Authors
Affiliations
Soon will be listed here.
Abstract

This work outlines the simultaneous estimation of the total phenolic and alkaloid contents in the tea samples by using catechin (C) and caffeine (CAF) oxidation signals at a non-modified boron-doped diamond (BDD) electrode. Two irreversible oxidation peaks, about + 1.03 (for C) and + 1.45 V (for CAF) vs Ag/AgCl in acetate buffer solution at pH 4.7, were seen in the cyclic voltammetric profile of the binary mixtures of C and CAF. In optimal conditions and utilizing the square-wave mode, the BDD electrode allows for simultaneous quantification of C and CAF within the concentration ranges of 5.0-100.0 µg mL (1.72 × 10 - 3.45 × 10 mol/L) and 1.0-50.0 µg mL (5.15 × 10 - 2.57 × 10 mol/L) respectively. The corresponding detection limits are 1.22 µg mL (4.21 × 10 mol/L) for C and 0.11 µg mL (5.66 × 10 mol/L) for CAF. Other phenolic compounds (like tannic acid, gallic acid, epicatechin, and epigallocatechin gallate) and other alkaloids (theophylline and theobromine) present in tea samples were examined for selectivity assessment. Ultimately, the applicability of the proposed approach was demonstrated by estimating the total phenolic and alkaloid contents in the black and green tea samples, expressed as C and CAF equivalents. The results obtained were contrasted against those acquired using UV-Vis spectrometry.

Citing Articles

Fast, Simple, and Sensitive Voltammetric Measurements of Acyclovir in Real Samples via Boron-Doped Diamond Electrode.

Gorylewski D, Tyszczuk-Rotko K, Wojciak M, Sowa I Materials (Basel). 2024; 17(18).

PMID: 39336222 PMC: 11433364. DOI: 10.3390/ma17184480.


Fast and simple voltammetric sensing of avanafil in the pharmaceutical formulation by using unmodified boron-doped diamond electrode.

Ali H, Barzani H, Yardim Y ADMET DMPK. 2024; 12(3):529-542.

PMID: 39091902 PMC: 11289509. DOI: 10.5599/admet.2357.


Structure-dependent detection of polyphenols using crown ether-immobilized gold nanoparticles.

Yamaki Y, Seo H, Hatano A, Suzuki M, Niikura K RSC Adv. 2024; 14(24):16870-16875.

PMID: 38799214 PMC: 11123615. DOI: 10.1039/d4ra02182g.