6.
Sati P, van Gelderen P, Silva A, Reich D, Merkle H, de Zwart J
. Micro-compartment specific T2* relaxation in the brain. Neuroimage. 2013; 77:268-78.
PMC: 3816634.
DOI: 10.1016/j.neuroimage.2013.03.005.
View
7.
Liu J, van Gelderen P, de Zwart J, Duyn J
. Reducing motion sensitivity in 3D high-resolution T*-weighted MRI by navigator-based motion and nonlinear magnetic field correction. Neuroimage. 2019; 206:116332.
PMC: 6981037.
DOI: 10.1016/j.neuroimage.2019.116332.
View
8.
Qin Q
. Point spread functions of the T2 decay in k-space trajectories with long echo train. Magn Reson Imaging. 2012; 30(8):1134-42.
PMC: 3443331.
DOI: 10.1016/j.mri.2012.04.017.
View
9.
Kim W, Shin H, Lee H, Park D, Kang J, Nam Y
. χ-Separation Imaging for Diagnosis of Multiple Sclerosis versus Neuromyelitis Optica Spectrum Disorder. Radiology. 2022; 307(1):e220941.
DOI: 10.1148/radiol.220941.
View
10.
Thevenaz P, Ruttimann U, Unser M
. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process. 2008; 7(1):27-41.
DOI: 10.1109/83.650848.
View
11.
Wicaksono K, Fushimi Y, Nakajima S, Yokota Y, Oshima S, Otani S
. Two-Minute Quantitative Susceptibility Mapping From Three-Dimensional Echo-Planar Imaging: Accuracy, Reliability, and Detection Performance in Patients With Cerebral Microbleeds. Invest Radiol. 2020; 56(2):69-77.
DOI: 10.1097/RLI.0000000000000708.
View
12.
Milovic C, Bilgic B, Zhao B, Acosta-Cabronero J, Tejos C
. Fast nonlinear susceptibility inversion with variational regularization. Magn Reson Med. 2018; 80(2):814-821.
DOI: 10.1002/mrm.27073.
View
13.
Connor J, Menzies S, St Martin S, Mufson E
. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. J Neurosci Res. 1992; 31(1):75-83.
DOI: 10.1002/jnr.490310111.
View
14.
Gretsch F, Marques J, Gallichan D
. Investigating the accuracy of FatNav-derived estimates of temporal B changes and their application to retrospective correction of high-resolution 3D GRE of the human brain at 7T. Magn Reson Med. 2018; 80(2):585-597.
DOI: 10.1002/mrm.27063.
View
15.
Zhou D, Liu T, Spincemaille P, Wang Y
. Background field removal by solving the Laplacian boundary value problem. NMR Biomed. 2014; 27(3):312-9.
DOI: 10.1002/nbm.3064.
View
16.
Robson P, Grant A, Madhuranthakam A, Lattanzi R, Sodickson D, McKenzie C
. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med. 2008; 60(4):895-907.
PMC: 2838249.
DOI: 10.1002/mrm.21728.
View
17.
Chen L, Soldan A, Oishi K, Faria A, Zhu Y, Albert M
. Quantitative Susceptibility Mapping of Brain Iron and β-Amyloid in MRI and PET Relating to Cognitive Performance in Cognitively Normal Older Adults. Radiology. 2020; 298(2):353-362.
PMC: 7850239.
DOI: 10.1148/radiol.2020201603.
View
18.
Wang Y, Liu T
. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2014; 73(1):82-101.
PMC: 4297605.
DOI: 10.1002/mrm.25358.
View
19.
Murakami Y, Kakeda S, Watanabe K, Ueda I, Ogasawara A, Moriya J
. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease. AJNR Am J Neuroradiol. 2015; 36(6):1102-8.
PMC: 8013031.
DOI: 10.3174/ajnr.A4260.
View
20.
Van de Moortele P, Pfeuffer J, Glover G, Ugurbil K, Hu X
. Respiration-induced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla. Magn Reson Med. 2002; 47(5):888-95.
DOI: 10.1002/mrm.10145.
View