» Articles » PMID: 38116009

Targeting NAD Metabolism: Dual Roles in Cancer Treatment

Overview
Journal Front Immunol
Date 2023 Dec 20
PMID 38116009
Authors
Affiliations
Soon will be listed here.
Abstract

Nicotinamide adenine dinucleotide (NAD) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD production, the functions of NAD metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD synthesis and therapies targeting NADase.

Citing Articles

Monoclonal anti-CD38 therapy in human myeloma: retrospects and prospects.

Horenstein A, Faini A, Morandi F, Ortolan E, Storti P, Giuliani N Front Immunol. 2025; 16:1519300.

PMID: 40013150 PMC: 11860881. DOI: 10.3389/fimmu.2025.1519300.


NAD+ Boosting Through NRH Supplementation Enhances Treatment Efficacy in EOC In Vitro.

Lee K, Chokshi S, Joshi T, Cummings M, Lyons C, Singleton M Int J Mol Sci. 2025; 26(4).

PMID: 40004182 PMC: 11855075. DOI: 10.3390/ijms26041719.


Metabolic Profiling of Breast Cancer Cell Lines: Unique and Shared Metabolites.

Gallo M, Ferrari E, Brugnoli F, Terrazzan A, Ancona P, Volinia S Int J Mol Sci. 2025; 26(3).

PMID: 39940737 PMC: 11816582. DOI: 10.3390/ijms26030969.


Biological Functions and Therapeutic Potential of NAD Metabolism in Gynecological Cancers.

Myong S, Nguyen A, Challa S Cancers (Basel). 2024; 16(17).

PMID: 39272943 PMC: 11394644. DOI: 10.3390/cancers16173085.


Immune infiltration and prognosis in gastric cancer: role of NAD+ metabolism-related markers.

Xing Y, Zhang Z, Gao W, Song W, Li T PeerJ. 2024; 12:e17833.

PMID: 39099656 PMC: 11297443. DOI: 10.7717/peerj.17833.

References
1.
Khan H, Uddin M, Balasubramanian S, Sulaiman N, Iqbal M, Chaker M . PAK4 and NAMPT as Novel Therapeutic Targets in Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, and Mantle Cell Lymphoma. Cancers (Basel). 2022; 14(1). PMC: 8750170. DOI: 10.3390/cancers14010160. View

2.
Wang B, Hasan M, Alvarado E, Yuan H, Wu H, Chen W . NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene. 2010; 30(8):907-21. DOI: 10.1038/onc.2010.468. View

3.
Gao L, Du X, Li J, Qin F . Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer. 2022; 128(4):492-504. PMC: 9938187. DOI: 10.1038/s41416-022-02052-6. View

4.
Essuman K, Summers D, Sasaki Y, Mao X, DiAntonio A, Milbrandt J . The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD Cleavage Activity that Promotes Pathological Axonal Degeneration. Neuron. 2017; 93(6):1334-1343.e5. PMC: 6284238. DOI: 10.1016/j.neuron.2017.02.022. View

5.
Chen X, Zhang X, Zhang G, Gao Y . Artesunate promotes Th1 differentiation from CD4+ T cells to enhance cell apoptosis in ovarian cancer via miR-142. Braz J Med Biol Res. 2019; 52(5):e7992. PMC: 6489539. DOI: 10.1590/1414-431X20197992. View