6.
Begni S, Popoli M, Moraschi S, Bignotti S, Tura G, Gennarelli M
. Association between the ionotropic glutamate receptor kainate 3 (GRIK3) ser310ala polymorphism and schizophrenia. Mol Psychiatry. 2002; 7(4):416-8.
DOI: 10.1038/sj.mp.4000987.
View
7.
Kumar J, Schuck P, Mayer M
. Structure and assembly mechanism for heteromeric kainate receptors. Neuron. 2011; 71(2):319-31.
PMC: 3145919.
DOI: 10.1016/j.neuron.2011.05.038.
View
8.
Twomey E, Yelshanskaya M, Grassucci R, Frank J, Sobolevsky A
. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature. 2017; 549(7670):60-65.
PMC: 5743206.
DOI: 10.1038/nature23479.
View
9.
Khanra N, Brown P, Perozzo A, Bowie D, Meyerson J
. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor. Elife. 2021; 10.
PMC: 7997659.
DOI: 10.7554/eLife.66097.
View
10.
Reiner A, Levitz J
. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron. 2018; 98(6):1080-1098.
PMC: 6484838.
DOI: 10.1016/j.neuron.2018.05.018.
View
11.
Lau A, Roux B
. The hidden energetics of ligand binding and activation in a glutamate receptor. Nat Struct Mol Biol. 2011; 18(3):283-7.
PMC: 3075596.
DOI: 10.1038/nsmb.2010.
View
12.
Shibata H, Aramaki T, Sakai M, Ninomiya H, Tashiro N, Iwata N
. Association study of polymorphisms in the GluR7, KA1 and KA2 kainate receptor genes (GRIK3, GRIK4, GRIK5) with schizophrenia. Psychiatry Res. 2005; 141(1):39-51.
DOI: 10.1016/j.psychres.2005.07.015.
View
13.
Hald H, Naur P, Pickering D, Sprogoe D, Madsen U, Timmermann D
. Partial agonism and antagonism of the ionotropic glutamate receptor iGLuR5: structures of the ligand-binding core in complex with domoic acid and 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid. J Biol Chem. 2007; 282(35):25726-36.
DOI: 10.1074/jbc.M700137200.
View
14.
Fisher M, Fisher J
. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors. Neuroscience. 2014; 278:70-80.
PMC: 4172534.
DOI: 10.1016/j.neuroscience.2014.08.009.
View
15.
Kosenkov A, Teplov I, Sergeev A, Maiorov S, Zinchenko V, Gaidin S
. Domoic acid suppresses hyperexcitation in the network due to activation of kainate receptors of GABAergic neurons. Arch Biochem Biophys. 2019; 671:52-61.
DOI: 10.1016/j.abb.2019.06.004.
View
16.
Gangwar S, Yen L, Yelshanskaya M, Sobolevsky A
. Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel. Cell Rep. 2023; 42(2):112124.
PMC: 10440371.
DOI: 10.1016/j.celrep.2023.112124.
View
17.
Li G, Oswald R, Niu L
. Channel-opening kinetics of GluR6 kainate receptor. Biochemistry. 2003; 42(42):12367-75.
DOI: 10.1021/bi034797t.
View
18.
Bjerrum E, Biggin P
. Rigid body essential X-ray crystallography: distinguishing the bend and twist of glutamate receptor ligand binding domains. Proteins. 2008; 72(1):434-46.
DOI: 10.1002/prot.21941.
View
19.
Dawe G, Musgaard M, Andrews E, Daniels B, Aurousseau M, Biggin P
. Defining the structural relationship between kainate-receptor deactivation and desensitization. Nat Struct Mol Biol. 2013; 20(9):1054-61.
PMC: 4972573.
DOI: 10.1038/nsmb.2654.
View
20.
Vernon C, Copits B, Stolz J, Guzman Y, Swanson G
. N-glycan content modulates kainate receptor functional properties. J Physiol. 2017; 595(17):5913-5930.
PMC: 5577532.
DOI: 10.1113/JP274790.
View