6.
Oshima H, Re S, Sugita Y
. Replica-Exchange Umbrella Sampling Combined with Gaussian Accelerated Molecular Dynamics for Free-Energy Calculation of Biomolecules. J Chem Theory Comput. 2019; 15(10):5199-5208.
DOI: 10.1021/acs.jctc.9b00761.
View
7.
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C
. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006; 65(3):712-25.
PMC: 4805110.
DOI: 10.1002/prot.21123.
View
8.
Aarthy M, Panwar U, Singh S
. Structural dynamic studies on identification of EGCG analogues for the inhibition of Human Papillomavirus E7. Sci Rep. 2020; 10(1):8661.
PMC: 7250877.
DOI: 10.1038/s41598-020-65446-7.
View
9.
Al-Khafaji K, Taskin Tok T
. Molecular dynamics simulation, free energy landscape and binding free energy computations in exploration the anti-invasive activity of amygdalin against metastasis. Comput Methods Programs Biomed. 2020; 195:105660.
DOI: 10.1016/j.cmpb.2020.105660.
View
10.
Guzik K, Zak K, Grudnik P, Magiera K, Musielak B, Torner R
. Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) Interaction via Transiently Induced Protein States and Dimerization of PD-L1. J Med Chem. 2017; 60(13):5857-5867.
DOI: 10.1021/acs.jmedchem.7b00293.
View
11.
Kim J, Kim Y, Choi J, Li W, Lee E, Park J
. Kaempferol and Its Glycoside, Kaempferol 7-O-Rhamnoside, Inhibit PD-1/PD-L1 Interaction In Vitro. Int J Mol Sci. 2020; 21(9).
PMC: 7247329.
DOI: 10.3390/ijms21093239.
View
12.
Guo Y, Jin Y, Wang B, Liu B
. Molecular Mechanism of Small-Molecule Inhibitors in Blocking the PD-1/PD-L1 Pathway through PD-L1 Dimerization. Int J Mol Sci. 2021; 22(9).
PMC: 8125578.
DOI: 10.3390/ijms22094766.
View
13.
Wang R, Liu W, Zhou L, Ma Y, Wang R
. Probing the acting mode and advantages of RMC-4550 as an Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2) inhibitor at molecular level through molecular docking and molecular dynamics. J Biomol Struct Dyn. 2019; 38(5):1525-1538.
DOI: 10.1080/07391102.2019.1613266.
View
14.
Wang J, Wolf R, Caldwell J, Kollman P, Case D
. Development and testing of a general amber force field. J Comput Chem. 2004; 25(9):1157-74.
DOI: 10.1002/jcc.20035.
View
15.
Shaabani S, Huizinga H, Butera R, Kouchi A, Guzik K, Magiera-Mularz K
. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018). Expert Opin Ther Pat. 2018; 28(9):665-678.
PMC: 6323140.
DOI: 10.1080/13543776.2018.1512706.
View
16.
Huck B, Kotzner L, Urbahns K
. Small Molecules Drive Big Improvements in Immuno-Oncology Therapies. Angew Chem Int Ed Engl. 2017; 57(16):4412-4428.
PMC: 5900885.
DOI: 10.1002/anie.201707816.
View
17.
Choi J, Kim Y, Kim J, Kim T, Li W, Oh T
. Anticancer Effect of and Its Active Compound by Improving T-Cell Activity Blockade of PD-1/PD-L1 Interaction in Humanized PD-1 Mouse Model. Front Immunol. 2020; 11:598556.
PMC: 7674495.
DOI: 10.3389/fimmu.2020.598556.
View
18.
Shen J, Li J, Zhao Z, Zhang L, Peng G, Liang L
. Molecular dynamics study on the mechanism of polynucleotide encapsulation by chitosan. Sci Rep. 2017; 7(1):5050.
PMC: 5506017.
DOI: 10.1038/s41598-017-05197-0.
View
19.
Verdura S, Cuyas E, Cortada E, Brunet J, Lopez-Bonet E, Martin-Castillo B
. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY). 2020; 12(1):8-34.
PMC: 6977679.
DOI: 10.18632/aging.102646.
View
20.
Guzik K, Tomala M, Muszak D, Konieczny M, Hec A, Blaszkiewicz U
. Development of the Inhibitors that Target the PD-1/PD-L1 Interaction-A Brief Look at Progress on Small Molecules, Peptides and Macrocycles. Molecules. 2019; 24(11).
PMC: 6600339.
DOI: 10.3390/molecules24112071.
View