» Articles » PMID: 38067258

Diffuse Gliomas with FGFR3-TACC3 Fusions: Oncogenic Mechanisms, Hallmarks, and Therapeutic Perspectives

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2023 Dec 9
PMID 38067258
Authors
Affiliations
Soon will be listed here.
Abstract

In 2012, whole-transcriptome sequencing analysis led to the discovery of recurrent fusions involving the and genes as the main oncological driver in a subset of human glioblastomas. Since then, fusions have been identified in several other solid cancers. Further studies dissected the oncogenic mechanisms of the fusion protein and its complex interplay with cancer cell metabolism. fusion-driven gliomas emerged as a defined subgroup with specific clinical, histological, and molecular features. Several inhibitors were tested in fusion-positive gliomas and proved some efficacy, although inferior to the results seen in other fusion-driven cancers. In this review, we summarize and discuss the state-of-the-art knowledge resulting from a 10-year research effort in the field, its clinical implications for glioma patients, the potential reasons for targeted therapy failures, and the perspective of emerging treatments.

Citing Articles

Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies.

Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A Mol Cancer. 2025; 24(1):58.

PMID: 40011944 PMC: 11863469. DOI: 10.1186/s12943-025-02267-0.


The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies.

Nguyen A, Facey C, Boman B Cancers (Basel). 2025; 17(1.

PMID: 39796710 PMC: 11720651. DOI: 10.3390/cancers17010082.


TARGET: A phase I/II open-label multicenter study to assess safety and efficacy of fexagratinib in patients with relapsed/refractory FGFR fusion-positive glioma.

Picca A, Di Stefano A, Savatovsky J, Ducray F, Chinot O, Moyal E Neurooncol Adv. 2024; 6(1):vdae068.

PMID: 38813112 PMC: 11135358. DOI: 10.1093/noajnl/vdae068.


Diffuse Gliomas with :: Fusion: Morphological and Molecular Features and Classification Challenges.

Marastoni E, Mulone D, Barresi V Cancers (Basel). 2024; 16(9).

PMID: 38730596 PMC: 11083705. DOI: 10.3390/cancers16091644.

References
1.
Nelson K, Meyer A, Wang C, Donoghue D . Oncogenic driver FGFR3-TACC3 is dependent on membrane trafficking and ERK signaling. Oncotarget. 2018; 9(76):34306-34319. PMC: 6188140. DOI: 10.18632/oncotarget.26142. View

2.
Lasorella A, Sanson M, Iavarone A . FGFR-TACC gene fusions in human glioma. Neuro Oncol. 2016; 19(4):475-483. PMC: 5464372. DOI: 10.1093/neuonc/now240. View

3.
Shi Y, Lim S, Liang Q, Iyer S, Wang H, Wang Z . Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature. 2019; 567(7748):341-346. PMC: 6655586. DOI: 10.1038/s41586-019-0993-x. View

4.
Parker B, Annala M, Cogdell D, Granberg K, Sun Y, Ji P . The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest. 2013; 123(2):855-65. PMC: 3561838. DOI: 10.1172/JCI67144. View

5.
Mata D, Benhamida J, Lin A, Vanderbilt C, Yang S, Villafania L . Genetic and epigenetic landscape of IDH-wildtype glioblastomas with FGFR3-TACC3 fusions. Acta Neuropathol Commun. 2020; 8(1):186. PMC: 7653727. DOI: 10.1186/s40478-020-01058-6. View