» Articles » PMID: 38049470

Dermal Features Derived from Optoacoustic Tomograms Via Machine Learning Correlate Microangiopathy Phenotypes with Diabetes Stage

Abstract

Skin microangiopathy has been associated with diabetes. Here we show that skin-microangiopathy phenotypes in humans can be correlated with diabetes stage via morphophysiological cutaneous features extracted from raster-scan optoacoustic mesoscopy (RSOM) images of skin on the leg. We obtained 199 RSOM images from 115 participants (40 healthy and 75 with diabetes), and used machine learning to segment skin layers and microvasculature to identify clinically explainable features pertaining to different depths and scales of detail that provided the highest predictive power. Features in the dermal layer at the scale of detail of 0.1-1 mm (such as the number of junction-to-junction branches) were highly sensitive to diabetes stage. A 'microangiopathy score' compiling the 32 most-relevant features predicted the presence of diabetes with an area under the receiver operating characteristic curve of 0.84. The analysis of morphophysiological cutaneous features via RSOM may allow for the discovery of diabetes biomarkers in the skin and for the monitoring of diabetes status.

Citing Articles

Multiscale optoacoustic assessment of skin microvascular reactivity in carotid artery disease.

Karlas A, Katsouli N, Fasoula N, Reidl M, Lees R, Zang L Photoacoustics. 2024; 40:100660.

PMID: 39649140 PMC: 11624498. DOI: 10.1016/j.pacs.2024.100660.


A fast all-optical 3D photoacoustic scanner for clinical vascular imaging.

Huynh N, Zhang E, Francies O, Kuklis F, Allen T, Zhu J Nat Biomed Eng. 2024; .

PMID: 39349585 DOI: 10.1038/s41551-024-01247-x.


Unsupervised Segmentation of 3D Microvascular Photoacoustic Images Using Deep Generative Learning.

Sweeney P, Hacker L, Lefebvre T, Brown E, Grohl J, Bohndiek S Adv Sci (Weinh). 2024; 11(32):e2402195.

PMID: 38923324 PMC: 11348209. DOI: 10.1002/advs.202402195.


Collection on clinical photoacoustic imaging.

Vonk J, Knieling F, Kruijff S Eur J Nucl Med Mol Imaging. 2024; 51(11):3151-3152.

PMID: 38832946 DOI: 10.1007/s00259-024-06780-0.

References
1.
Karlas A, Pleitez M, Aguirre J, Ntziachristos V . Optoacoustic imaging in endocrinology and metabolism. Nat Rev Endocrinol. 2021; 17(6):323-335. DOI: 10.1038/s41574-021-00482-5. View

2.
van der Walt S, Schonberger J, Nunez-Iglesias J, Boulogne F, Warner J, Yager N . scikit-image: image processing in Python. PeerJ. 2014; 2:e453. PMC: 4081273. DOI: 10.7717/peerj.453. View

3.
Yoon H, Baik S, Oh C . Quantitative measurement of desquamation and skin elasticity in diabetic patients. Skin Res Technol. 2002; 8(4):250-4. DOI: 10.1034/j.1600-0846.2002.00332.x. View

4.
Varoquaux G, Cheplygina V . Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med. 2022; 5(1):48. PMC: 9005663. DOI: 10.1038/s41746-022-00592-y. View

5.
Chawla A, Chawla R, Jaggi S . Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?. Indian J Endocrinol Metab. 2016; 20(4):546-51. PMC: 4911847. DOI: 10.4103/2230-8210.183480. View