» Articles » PMID: 38035193

A Universal Workflow for Creation, Validation, and Generalization of Detailed Neuronal Models

Overview
Journal Patterns (N Y)
Date 2023 Nov 30
PMID 38035193
Authors
Affiliations
Soon will be listed here.
Abstract

Detailed single-neuron modeling is widely used to study neuronal functions. While cellular and functional diversity across the mammalian cortex is vast, most of the available computational tools focus on a limited set of specific features characteristic of a single neuron. Here, we present a generalized automated workflow for the creation of robust electrical models and illustrate its performance by building cell models for the rat somatosensory cortex. Each model is based on a 3D morphological reconstruction and a set of ionic mechanisms. We use an evolutionary algorithm to optimize neuronal parameters to match the electrophysiological features extracted from experimental data. Then we validate the optimized models against additional stimuli and assess their generalizability on a population of similar morphologies. Compared to the state-of-the-art canonical models, our models show 5-fold improved generalizability. This versatile approach can be used to build robust models of any neuronal type.

Citing Articles

What makes human cortical pyramidal neurons functionally complex.

Aizenbud I, Yoeli D, Beniaguev D, de Kock C, London M, Segev I bioRxiv. 2025; .

PMID: 39763809 PMC: 11702691. DOI: 10.1101/2024.12.17.628883.


Large-Scale Mechanistic Models of Brain Circuits with Biophysically and Morphologically Detailed Neurons.

Dura-Bernal S, Herrera B, Lupascu C, Marsh B, Gandolfi D, Marasco A J Neurosci. 2024; 44(40).

PMID: 39358017 PMC: 11450527. DOI: 10.1523/JNEUROSCI.1236-24.2024.


: An interactive approach for unraveling dendritic dynamics.

Makarov R, Chavlis S, Poirazi P bioRxiv. 2024; .

PMID: 39314451 PMC: 11418972. DOI: 10.1101/2024.09.06.611191.


A universal workflow for creation, validation, and generalization of detailed neuronal models.

Reva M, Rossert C, Arnaudon A, Damart T, Mandge D, Tuncel A Patterns (N Y). 2023; 4(11):100855.

PMID: 38035193 PMC: 10682753. DOI: 10.1016/j.patter.2023.100855.


Controlling morpho-electrophysiological variability of neurons with detailed biophysical models.

Arnaudon A, Reva M, Zbili M, Markram H, Van Geit W, Kanari L iScience. 2023; 26(11):108222.

PMID: 37953946 PMC: 10638024. DOI: 10.1016/j.isci.2023.108222.

References
1.
Iavarone E, Yi J, Shi Y, Zandt B, OReilly C, Van Geit W . Experimentally-constrained biophysical models of tonic and burst firing modes in thalamocortical neurons. PLoS Comput Biol. 2019; 15(5):e1006753. PMC: 6541309. DOI: 10.1371/journal.pcbi.1006753. View

2.
Masoli S, Rizza M, Sgritta M, Van Geit W, Schurmann F, DAngelo E . Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells. Front Cell Neurosci. 2017; 11:71. PMC: 5350144. DOI: 10.3389/fncel.2017.00071. View

3.
Dai K, Gratiy S, Billeh Y, Xu R, Cai B, Cain N . Brain Modeling ToolKit: An open source software suite for multiscale modeling of brain circuits. PLoS Comput Biol. 2020; 16(11):e1008386. PMC: 7728187. DOI: 10.1371/journal.pcbi.1008386. View

4.
Brookings T, Goeritz M, Marder E . Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment. J Neurophysiol. 2014; 112(9):2332-48. PMC: 4274917. DOI: 10.1152/jn.00007.2014. View

5.
van Elburg R, van Ooyen A . Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol. 2010; 6(5):e1000781. PMC: 2869305. DOI: 10.1371/journal.pcbi.1000781. View