» Articles » PMID: 38016471

Striatal Dopamine Integrates Cost, Benefit, and Motivation

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2023 Nov 28
PMID 38016471
Authors
Affiliations
Soon will be listed here.
Abstract

Striatal dopamine (DA) release has long been linked to reward processing, but it remains controversial whether DA release reflects costs or benefits and how these signals vary with motivation. Here, we measure DA release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) while independently varying costs and benefits and apply behavioral economic principles to determine a mouse's level of motivation. We reveal that DA release in both structures incorporates both reward magnitude and sunk cost. Surprisingly, motivation was inversely correlated with reward-evoked DA release. Furthermore, optogenetically evoked DA release was also heavily dependent on sunk cost. Our results reconcile previous disparate findings by demonstrating that striatal DA release simultaneously encodes cost, benefit, and motivation but in distinct manners over different timescales. Future work will be necessary to determine whether the reduction in phasic DA release in highly motivated animals is due to changes in tonic DA levels.

Citing Articles

Neuroeconomically dissociable forms of mental accounting are altered in a mouse model of diabetes.

Nwakama C, Durand-de Cuttoli R, Oketokoun Z, Brown S, Haller J, Mendez A Commun Biol. 2025; 8(1):102.

PMID: 39838110 PMC: 11751097. DOI: 10.1038/s42003-025-07500-6.


Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

Boumhaouad S, Makowicz E, Choi S, Bouhaddou N, Balla J, Taghzouti K ACS Chem Neurosci. 2025; 16(3):303-310.

PMID: 39798080 PMC: 11804867. DOI: 10.1021/acschemneuro.4c00323.


How Dopamine Enables Learning from Aversion.

Lopez G, Lerner T Curr Opin Behav Sci. 2024; 61.

PMID: 39719969 PMC: 11666190. DOI: 10.1016/j.cobeha.2024.101476.


Opponent control of reinforcement by striatal dopamine and serotonin.

Cardozo Pinto D, Pomrenze M, Guo M, Touponse G, Chen A, Bentzley B Nature. 2024; 639(8053):143-152.

PMID: 39586475 DOI: 10.1038/s41586-024-08412-x.


Dynamic overrepresentation of accumbal cues in food- and opioid-seeking rats after prenatal THC exposure.

Lujan M, Young-Morrison R, Aroni S, Katona I, Melis M, Cheer J Sci Adv. 2024; 10(45):eadq5652.

PMID: 39514650 PMC: 11546747. DOI: 10.1126/sciadv.adq5652.


References
1.
Burgess C, Ramesh R, Sugden A, Levandowski K, Minnig M, Fenselau H . Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala. Neuron. 2016; 91(5):1154-1169. PMC: 5017916. DOI: 10.1016/j.neuron.2016.07.032. View

2.
Inzlicht M, Shenhav A, Olivola C . The Effort Paradox: Effort Is Both Costly and Valued. Trends Cogn Sci. 2018; 22(4):337-349. PMC: 6172040. DOI: 10.1016/j.tics.2018.01.007. View

3.
Liu C, Kaeser P . Mechanisms and regulation of dopamine release. Curr Opin Neurobiol. 2019; 57:46-53. PMC: 6629510. DOI: 10.1016/j.conb.2019.01.001. View

4.
Steinmetz N, Zatka-Haas P, Carandini M, Harris K . Distributed coding of choice, action and engagement across the mouse brain. Nature. 2019; 576(7786):266-273. PMC: 6913580. DOI: 10.1038/s41586-019-1787-x. View

5.
Koob G, Le Moal M . Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2000; 24(2):97-129. DOI: 10.1016/S0893-133X(00)00195-0. View