6.
Mendez-Echevarria A, Sainz T, Falces-Romero I, De Felipe B, Escolano L, Alcolea S
. Long-Term Persistence of Anti-SARS-CoV-2 Antibodies in a Pediatric Population. Pathogens. 2021; 10(6).
PMC: 8226775.
DOI: 10.3390/pathogens10060700.
View
7.
Lopez M, Chiner-Oms A, Garcia de Viedma D, Ruiz-Rodriguez P, Bracho M, Cancino-Munoz I
. The first wave of the COVID-19 epidemic in Spain was associated with early introductions and fast spread of a dominating genetic variant. Nat Genet. 2021; 53(10):1405-1414.
PMC: 8481935.
DOI: 10.1038/s41588-021-00936-6.
View
8.
Gallais F, Gantner P, Bruel T, Velay A, Planas D, Wendling M
. Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine. 2021; 71:103561.
PMC: 8390300.
DOI: 10.1016/j.ebiom.2021.103561.
View
9.
Perez-Saez J, Zaballa M, Yerly S, Andrey D, Meyer B, Eckerle I
. Persistence of anti-SARS-CoV-2 antibodies: immunoassay heterogeneity and implications for serosurveillance. Clin Microbiol Infect. 2021; 27(11):1695.e7-1695.e12.
PMC: 8261139.
DOI: 10.1016/j.cmi.2021.06.040.
View
10.
Gong F, Wei H, Li Q, Liu L, Li B
. Evaluation and Comparison of Serological Methods for COVID-19 Diagnosis. Front Mol Biosci. 2021; 8:682405.
PMC: 8343015.
DOI: 10.3389/fmolb.2021.682405.
View
11.
Zhang Y, Huang Z, Zhu J, Li C, Fang Z, Chen K
. An updated review of SARS-CoV-2 detection methods in the context of a novel coronavirus pandemic. Bioeng Transl Med. 2022; :e10356.
PMC: 9349698.
DOI: 10.1002/btm2.10356.
View
12.
Landis J, Koch G
. The measurement of observer agreement for categorical data. Biometrics. 1977; 33(1):159-74.
View
13.
Pollan M, Perez-Gomez B, Pastor-Barriuso R, Oteo J, Hernan M, Perez-Olmeda M
. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020; 396(10250):535-544.
PMC: 7336131.
DOI: 10.1016/S0140-6736(20)31483-5.
View
14.
Williams L, Jurado S, Llorente F, Romualdo A, Gonzalez S, Saconne A
. The C-Terminal Half of SARS-CoV-2 Nucleocapsid Protein, Industrially Produced in Plants, Is Valid as Antigen in COVID-19 Serological Tests. Front Plant Sci. 2021; 12:699665.
PMC: 8354202.
DOI: 10.3389/fpls.2021.699665.
View
15.
Jugwanth S, Gededzha M, Mampeule N, Zwane N, David A, Burgers W
. Performance of the Abbott SARS-CoV-2 IgG serological assay in South African 2 patients. PLoS One. 2022; 17(2):e0262442.
PMC: 8815965.
DOI: 10.1371/journal.pone.0262442.
View
16.
van den Beld M, Murk J, Kluytmans J, Koopmans M, Reimerink J, van Loo I
. Increasing the Efficiency of a National Laboratory Response to COVID-19: a Nationwide Multicenter Evaluation of 47 Commercial SARS-CoV-2 Immunoassays by 41 Laboratories. J Clin Microbiol. 2021; 59(9):e0076721.
PMC: 8373020.
DOI: 10.1128/JCM.00767-21.
View
17.
Stefanelli P, Bella A, Fedele G, Pancheri S, Leone P, Vacca P
. Prevalence of SARS-CoV-2 IgG antibodies in an area of northeastern Italy with a high incidence of COVID-19 cases: a population-based study. Clin Microbiol Infect. 2020; 27(4):633.e1-633.e7.
PMC: 7695553.
DOI: 10.1016/j.cmi.2020.11.013.
View
18.
Dortet L, Ronat J, Vauloup-Fellous C, Langendorf C, Mendels D, Emeraud C
. Evaluating 10 Commercially Available SARS-CoV-2 Rapid Serological Tests by Use of the STARD (Standards for Reporting of Diagnostic Accuracy Studies) Method. J Clin Microbiol. 2020; 59(2).
PMC: 8111137.
DOI: 10.1128/JCM.02342-20.
View
19.
Parai D, Dash G, Choudhary H, Peter A, Rout U, Nanda R
. Diagnostic accuracy comparison of three fully automated chemiluminescent immunoassay platforms for the detection of SARS-CoV-2 antibodies. J Virol Methods. 2021; 292:114121.
PMC: 7934617.
DOI: 10.1016/j.jviromet.2021.114121.
View
20.
Zhang S, Xu K, Li C, Zhou L, Kong X, Peng J
. Long-Term Kinetics of SARS-CoV-2 Antibodies and Impact of Inactivated Vaccine on SARS-CoV-2 Antibodies Based on a COVID-19 Patients Cohort. Front Immunol. 2022; 13:829665.
PMC: 8828498.
DOI: 10.3389/fimmu.2022.829665.
View