» Articles » PMID: 37983648

TEPCAM: Prediction of T-cell Receptor-epitope Binding Specificity Via Interpretable Deep Learning

Overview
Journal Protein Sci
Specialty Biochemistry
Date 2023 Nov 20
PMID 37983648
Authors
Affiliations
Soon will be listed here.
Abstract

The recognition of T-cell receptor (TCR) on the surface of T cell to specific epitope presented by the major histocompatibility complex is the key to trigger the immune response. Identifying the binding rules of TCR-epitope pair is crucial for developing immunotherapies, including neoantigen vaccine and drugs. Accurate prediction of TCR-epitope binding specificity via deep learning remains challenging, especially in test cases which are unseen in the training set. Here, we propose TEPCAM (TCR-EPitope identification based on Cross-Attention and Multi-channel convolution), a deep learning model that incorporates self-attention, cross-attention mechanism, and multi-channel convolution to improve the generalizability and enhance the model interpretability. Experimental results demonstrate that our model outperformed several state-of-the-art models on two challenging tasks including a strictly split dataset and an external dataset. Furthermore, the model can learn some interaction patterns between TCR and epitope by extracting the interpretable matrix from cross-attention layer and mapping them to the three-dimensional structures. The source code and data are freely available at https://github.com/Chenjw99/TEPCAM.

Citing Articles

T-cell receptor structures and predictive models reveal comparable alpha and beta chain structural diversity despite differing genetic complexity.

Quast N, Abanades B, Guloglu B, Karuppiah V, Harper S, Raybould M Commun Biol. 2025; 8(1):362.

PMID: 40038394 PMC: 11880327. DOI: 10.1038/s42003-025-07708-6.


TPepRet: a deep learning model for characterizing T cell receptors-antigen binding patterns.

Wang M, Fan W, Wu T, Li M Bioinformatics. 2025; .

PMID: 39880376 PMC: 11784750. DOI: 10.1093/bioinformatics/btaf022.


Integrating machine learning to advance epitope mapping.

Grewal S, Hegde N, Yanow S Front Immunol. 2024; 15:1463931.

PMID: 39403389 PMC: 11471525. DOI: 10.3389/fimmu.2024.1463931.


Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens.

Hao Q, Long Y, Yang Y, Deng Y, Ding Z, Yang L Vaccines (Basel). 2024; 12(7).

PMID: 39066355 PMC: 11281709. DOI: 10.3390/vaccines12070717.


Advanced Computational Methods for Modeling, Prediction and Optimization-A Review.

Krzywanski J, Sosnowski M, Grabowska K, Zylka A, Lasek L, Kijo-Kleczkowska A Materials (Basel). 2024; 17(14).

PMID: 39063813 PMC: 11279266. DOI: 10.3390/ma17143521.


References
1.
Springer I, Besser H, Tickotsky-Moskovitz N, Dvorkin S, Louzoun Y . Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs. Front Immunol. 2020; 11:1803. PMC: 7477042. DOI: 10.3389/fimmu.2020.01803. View

2.
Rossjohn J, Gras S, Miles J, Turner S, Godfrey D, McCluskey J . T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2014; 33:169-200. DOI: 10.1146/annurev-immunol-032414-112334. View

3.
De Neuter N, Bittremieux W, Beirnaert C, Cuypers B, Mrzic A, Moris P . On the feasibility of mining CD8+ T cell receptor patterns underlying immunogenic peptide recognition. Immunogenetics. 2017; 70(3):159-168. DOI: 10.1007/s00251-017-1023-5. View

4.
Robinson J, Halliwell J, Hayhurst J, Flicek P, Parham P, Marsh S . The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2014; 43(Database issue):D423-31. PMC: 4383959. DOI: 10.1093/nar/gku1161. View

5.
Birnbaum M, Dong S, Garcia K . Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function. Immunol Rev. 2012; 250(1):82-101. PMC: 3474532. DOI: 10.1111/imr.12006. View