» Articles » PMID: 37949881

Site-selected in Situ Polymerization for Living Cell Surface Engineering

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Nov 10
PMID 37949881
Authors
Affiliations
Soon will be listed here.
Abstract

The construction of polymer-based mimicry on cell surface to manipulate cell behaviors and functions offers promising prospects in the field of biotechnology and cell therapy. However, precise control of polymer grafting sites is essential to successful implementation of biomimicry and functional modulation, which has been overlooked by most current research. Herein, we report a biological site-selected, in situ controlled radical polymerization platform for living cell surface engineering. The method utilizes metabolic labeling techniques to confine the growth sites of polymers and designs a Fenton-RAFT polymerization technique with cytocompatibility. Polymers grown at different sites (glycans, proteins, lipids) have different membrane retention time and exhibit differential effects on the recognition behaviors of cellular glycans. Of particular importance is the achievement of in situ copolymerization of glycomonomers on the outermost natural glycan sites of cell membrane, building a biomimetic glycocalyx with distinct recognition properties.

Citing Articles

Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment.

Chang Y, Chang M, Bao X, Dong C Bioact Mater. 2024; 42:379-403.

PMID: 39308543 PMC: 11415837. DOI: 10.1016/j.bioactmat.2024.08.046.


Precise AIE-Based Ternary Co-Assembly for Saccharide Recognition and Classification.

Chang Y, Shao J, Zhao X, Qin H, Du Y, Li J Adv Sci (Weinh). 2024; 11(40):e2405613.

PMID: 39193873 PMC: 11633354. DOI: 10.1002/advs.202405613.


In Situ Glycan Analysis and Editing in Living Systems.

Li Y, Wang H, Chen Y, Ding L, Ju H JACS Au. 2024; 4(2):384-401.

PMID: 38425935 PMC: 10900212. DOI: 10.1021/jacsau.3c00717.


Organismal Function Enhancement through Biomaterial Intervention.

Tian F, Zhou Y, Ma Z, Tang R, Wang X Nanomaterials (Basel). 2024; 14(4).

PMID: 38392750 PMC: 10891834. DOI: 10.3390/nano14040377.

References
1.
Su L, Feng Y, Wei K, Xu X, Liu R, Chen G . Carbohydrate-Based Macromolecular Biomaterials. Chem Rev. 2021; 121(18):10950-11029. DOI: 10.1021/acs.chemrev.0c01338. View

2.
Facklam A, Volpatti L, Anderson D . Biomaterials for Personalized Cell Therapy. Adv Mater. 2019; 32(13):e1902005. DOI: 10.1002/adma.201902005. View

3.
Boyce M, Carrico I, Ganguli A, Yu S, Hangauer M, Hubbard S . Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc Natl Acad Sci U S A. 2011; 108(8):3141-6. PMC: 3044403. DOI: 10.1073/pnas.1010045108. View

4.
Rani S, Gupta U . HPMA-based polymeric conjugates in anticancer therapeutics. Drug Discov Today. 2020; 25(6):997-1012. DOI: 10.1016/j.drudis.2020.04.007. View

5.
Reyhani A, Nothling M, Ranji-Burachaloo H, McKenzie T, Fu Q, Tan S . Blood-Catalyzed RAFT Polymerization. Angew Chem Int Ed Engl. 2018; 57(32):10288-10292. DOI: 10.1002/anie.201802544. View