» Articles » PMID: 37935797

Addition of Fibers Derived from Paper Mill Sludge in Paper Coatings: Impact on Microstructure, Surface and Optical Properties

Overview
Journal Sci Rep
Specialty Science
Date 2023 Nov 7
PMID 37935797
Authors
Affiliations
Soon will be listed here.
Abstract

Traditionally, cellulose nanofiber (CNF) production has primarily relied on virgin cellulose sources. Yet, the shift to using paper mill sludge (PMS) as a source for CNF underscores the significance of reusing and recycling industrial byproducts. PMS contains significant amounts of cellulose that can be extracted as a raw material. The purpose of present study is to provide a sustainable approach to PMS utilization as a paper coating additive in the cellulose nanofibrils (CNF) form via simply scalable wire-wound rod coating method. The effect of CNF additive amounts at two coating layers on microstructure and surface properties of coatings such as porosity, air permeability surface roughness and optical properties such as brightness, gloss and CIE L*a*b* is studied, which they can also provide insight for the eventual print performance. Results indicated that the obtained CNF in paper coating shows 52% decrease in porosity, presenting significant improvement in the coating microstructure. The marginal increase in permeability coefficient and surface roughness, 54% and 10%, respectively, suggests improving color reproduction and preventing color density losses. Optical analysis showed slight decrease in brightness and gloss, as was expected. Notably, the lightness was improved, which also indicates increasing color gamut volume in printing applications. As a result, the current work offers a sustainable approach to manage PMS for use in paper coatings as a high-value-added material.

References
1.
Jia S, Wei J, Ma C, Shao Z . Tough and Multifunctional Composite Film Actuators Based on Cellulose Nanofibers toward Smart Wearables. ACS Appl Mater Interfaces. 2021; 13(32):38700-38711. DOI: 10.1021/acsami.1c09653. View

2.
Calisto V, Ferreira C, Santos S, Gil M, Otero M, Esteves V . Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water. Bioresour Technol. 2014; 166:335-44. DOI: 10.1016/j.biortech.2014.05.047. View

3.
Xu X, Li R, Tang C, Wang H, Zhuang X, Liu Y . Cellulose nanofiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells. Carbohydr Polym. 2018; 184:299-306. DOI: 10.1016/j.carbpol.2017.12.074. View

4.
Zhou G, Chen Z, Fang F, He Y, Sun H, Shi H . Fenton-like degradation of Methylene Blue using paper mill sludge-derived magnetically separable heterogeneous catalyst: Characterization and mechanism. J Environ Sci (China). 2015; 35:20-26. DOI: 10.1016/j.jes.2015.01.026. View

5.
Gurram R, Al-Shannag M, Lecher N, Duncan S, Singsaas E, Alkasrawi M . Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. Bioresour Technol. 2015; 192:529-39. DOI: 10.1016/j.biortech.2015.06.010. View