» Articles » PMID: 24985164

Cellulose Nanofiber Paper As an Ultra Flexible Nonvolatile Memory

Overview
Journal Sci Rep
Specialty Science
Date 2014 Jul 3
PMID 24985164
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

On the development of flexible electronics, a highly flexible nonvolatile memory, which is an important circuit component for the portability, is necessary. However, the flexibility of existing nonvolatile memory has been limited, e.g. the smallest radius into which can be bent has been millimeters range, due to the difficulty in maintaining memory properties while bending. Here we propose the ultra flexible resistive nonvolatile memory using Ag-decorated cellulose nanofiber paper (CNP). The Ag-decorated CNP devices showed the stable nonvolatile memory effects with 6 orders of ON/OFF resistance ratio and the small standard deviation of switching voltage distribution. The memory performance of CNP devices can be maintained without any degradation when being bent down to the radius of 350 μm, which is the smallest value compared to those of existing any flexible nonvolatile memories. Thus the present device using abundant and mechanically flexible CNP offers a highly flexible nonvolatile memory for portable flexible electronics.

Citing Articles

Addition of fibers derived from paper mill sludge in paper coatings: impact on microstructure, surface and optical properties.

Altay B, Aksoy B, Huq A, Hailstone R, Klass C, Demir M Sci Rep. 2023; 13(1):19350.

PMID: 37935797 PMC: 10630507. DOI: 10.1038/s41598-023-46130-y.


Clear transparent cellulose nanopaper prepared from a concentrated dispersion by high-humidity drying.

Isobe N, Kasuga T, Nogi M RSC Adv. 2022; 8(4):1833-1837.

PMID: 35542620 PMC: 9077276. DOI: 10.1039/c7ra12672g.


Freestanding Translucent ZnO-Cellulose Nanocomposite Films for Ultraviolet Sensor Applications.

Komatsu H, Kawamoto Y, Ikuno T Nanomaterials (Basel). 2022; 12(6).

PMID: 35335753 PMC: 8954166. DOI: 10.3390/nano12060940.


High-Speed Fabrication of Clear Transparent Cellulose Nanopaper by Applying Humidity-Controlled Multi-Stage Drying Method.

Li C, Kasuga T, Uetani K, Koga H, Nogi M Nanomaterials (Basel). 2020; 10(11).

PMID: 33158012 PMC: 7693990. DOI: 10.3390/nano10112194.


Building memory devices from biocomposite electronic materials.

Xing X, Chen M, Gong Y, Lv Z, Han S, Zhou Y Sci Technol Adv Mater. 2020; 21(1):100-121.

PMID: 32165990 PMC: 7054979. DOI: 10.1080/14686996.2020.1725395.


References
1.
Missoum K, Belgacem M, Bras J . Nanofibrillated Cellulose Surface Modification: A Review. Materials (Basel). 2017; 6(5):1745-1766. PMC: 5452503. DOI: 10.3390/ma6051745. View

2.
Zhou Y, Han S, Sonar P, Roy V . Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism. Sci Rep. 2013; 3:2319. PMC: 3728587. DOI: 10.1038/srep02319. View

3.
Nogi M, Komoda N, Otsuka K, Suganuma K . Foldable nanopaper antennas for origami electronics. Nanoscale. 2013; 5(10):4395-9. DOI: 10.1039/c3nr00231d. View

4.
Waser R, Aono M . Nanoionics-based resistive switching memories. Nat Mater. 2007; 6(11):833-40. DOI: 10.1038/nmat2023. View

5.
Zhou Y, Han S, Xu Z, Roy V . Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate). Nanotechnology. 2012; 23(34):344014. DOI: 10.1088/0957-4484/23/34/344014. View