» Articles » PMID: 37919263

Integrating Databases for Spatial Analysis of Parasite-host Associations and the Novel Brazilian Dataset

Overview
Journal Sci Data
Specialty Science
Date 2023 Nov 3
PMID 37919263
Authors
Affiliations
Soon will be listed here.
Abstract

Incomplete information on parasites, their associated hosts, and their precise geographical location hampers the ability to predict disease emergence in Brazil, a continental-sized country characterised by significant regional disparities. Here, we demonstrate how the NCBI Nucleotide and GBIF databases can be used as complementary databases to study spatially georeferenced parasite-host associations. We also provide a comprehensive dataset of parasites associated with mammal species that occur in Brazil, the Brazilian Mammal Parasite Occurrence Data (BMPO). This dataset integrates wild mammal species' morphological and life-history traits, zoonotic parasite status, and zoonotic microparasite transmission modes. Through meta-networks, comprising interconnected host species linked by shared zoonotic microparasites, we elucidate patterns of zoonotic microparasite dissemination. This approach contributes to wild animal and zoonoses surveillance, identifying and targeting host species accountable for disproportionate levels of parasite sharing within distinct biomes. Moreover, our novel dataset contributes to the refinement of models concerning disease emergence and parasite distribution among host species.

Citing Articles

Integrative taxonomy in helminth analysis: protocols and limitations in the twenty-first century.

Rojas A, Bass L, Campos-Camacho J, Dittel-Meza F, Fonseca C, Huang-Qiu Y Parasit Vectors. 2025; 18(1):87.

PMID: 40045428 PMC: 11881375. DOI: 10.1186/s13071-025-06682-6.


Integrating databases for spatial analysis of parasite-host associations and the novel Brazilian dataset.

Cruz G, Winck G, DAndrea P, Krempser E, Vidal M, Andreazzi C Sci Data. 2023; 10(1):757.

PMID: 37919263 PMC: 10622529. DOI: 10.1038/s41597-023-02636-8.

References
1.
Hudson L, Newbold T, Contu S, Hill S, Lysenko I, De Palma A . The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol Evol. 2017; 7(1):145-188. PMC: 5215197. DOI: 10.1002/ece3.2579. View

2.
Teixeira B, Roque A, Barreiros-Gomez S, Borodin P, Jansen A, DAndrea P . Maintenance and breeding of Thrichomys (Trouessart, 1880) (Rodentia: Echimyidae) in captivity. Mem Inst Oswaldo Cruz. 2005; 100(6):527-30. DOI: 10.1590/s0074-02762005000600005. View

3.
Colella J, Cobos M, Salinas I, Cook J . Advancing the central role of non-model biorepositories in predictive modeling of emerging pathogens. PLoS Pathog. 2023; 19(6):e1011410. PMC: 10270337. DOI: 10.1371/journal.ppat.1011410. View

4.
Chame M, Barbosa H, Gadelha Jr L, Augusto D, Krempser E, Abdalla L . SISS-Geo: Leveraging Citizen Science to Monitor Wildlife Health Risks in Brazil. J Healthc Inform Res. 2022; 3(4):414-440. PMC: 8982816. DOI: 10.1007/s41666-019-00055-2. View

5.
Redding D, Atkinson P, Cunningham A, Iacono G, Moses L, Wood J . Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa. Nat Commun. 2019; 10(1):4531. PMC: 6794280. DOI: 10.1038/s41467-019-12499-6. View