6.
Ma C, Liu Z
. Design and Synthesis of Coumarin Derivatives as Novel PI3K Inhibitors. Anticancer Agents Med Chem. 2016; 17(3):395-403.
DOI: 10.2174/1871520616666160223120207.
View
7.
Becker H
. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer. 2019; 122(2):157-167.
PMC: 7051959.
DOI: 10.1038/s41416-019-0642-z.
View
8.
Supuran C, Capasso C
. An Overview of the Bacterial Carbonic Anhydrases. Metabolites. 2017; 7(4).
PMC: 5746736.
DOI: 10.3390/metabo7040056.
View
9.
Nocentini A, Supuran C
. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: a patent review (2008-2018). Expert Opin Ther Pat. 2018; 28(10):729-740.
DOI: 10.1080/13543776.2018.1508453.
View
10.
Salar U, Khan K, Jabeen A, Faheem A, Naqvi F, Ahmed S
. ROS Inhibitory Activity and Cytotoxicity Evaluation of Benzoyl, Acetyl, Alkyl Ester, and Sulfonate Ester Substituted Coumarin Derivatives. Med Chem. 2019; 16(8):1099-1111.
DOI: 10.2174/1573406415666190826153001.
View
11.
Melis C, Meleddu R, Angeli A, Distinto S, Bianco G, Capasso C
. Isatin: a privileged scaffold for the design of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2016; 32(1):68-73.
PMC: 6010117.
DOI: 10.1080/14756366.2016.1235042.
View
12.
Angeli A, Pinteala M, Maier S, Del Prete S, Capasso C, Simionescu B
. Inhibition of α-, β-, γ-, δ-, ζ- and η-class carbonic anhydrases from bacteria, fungi, algae, diatoms and protozoans with famotidine. J Enzyme Inhib Med Chem. 2019; 34(1):644-650.
PMC: 6366436.
DOI: 10.1080/14756366.2019.1571273.
View
13.
Wu H, Zhuo K, Wang K
. Efficacy of targeted therapy in patients with HER2-positive non-small cell lung cancer: A systematic review and meta-analysis. Br J Clin Pharmacol. 2021; 88(5):2019-2034.
PMC: 9302639.
DOI: 10.1111/bcp.15155.
View
14.
Melis C, Distinto S, Bianco G, Meleddu R, Cottiglia F, Fois B
. Targeting Tumor Associated Carbonic Anhydrases IX and XII: Highly Isozyme Selective Coumarin and Psoralen Inhibitors. ACS Med Chem Lett. 2018; 9(7):725-729.
PMC: 6047168.
DOI: 10.1021/acsmedchemlett.8b00170.
View
15.
Park H, Choe H, Hong S
. Virtual screening and biochemical evaluation to identify new inhibitors of mammalian target of rapamycin (mTOR). Bioorg Med Chem Lett. 2014; 24(3):835-8.
DOI: 10.1016/j.bmcl.2013.12.081.
View
16.
Distinto S, Meleddu R, Ortuso F, Cottiglia F, Deplano S, Sequeira L
. Exploring new structural features of the 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzenesulphonamide scaffold for the inhibition of human carbonic anhydrases. J Enzyme Inhib Med Chem. 2019; 34(1):1526-1533.
PMC: 6713091.
DOI: 10.1080/14756366.2019.1654470.
View
17.
Waheed A, Sly W
. Carbonic anhydrase XII functions in health and disease. Gene. 2017; 623:33-40.
PMC: 5851007.
DOI: 10.1016/j.gene.2017.04.027.
View
18.
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A
. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci. 2020; 21(13).
PMC: 7370201.
DOI: 10.3390/ijms21134618.
View
19.
Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre M
. The Global Burden of Cancer 2013. JAMA Oncol. 2015; 1(4):505-27.
PMC: 4500822.
DOI: 10.1001/jamaoncol.2015.0735.
View
20.
Pacchiano F, Carta F, McDonald P, Lou Y, Vullo D, Scozzafava A
. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem. 2011; 54(6):1896-902.
DOI: 10.1021/jm101541x.
View