» Articles » PMID: 37864298

PML-mediated Nuclear Loosening Permits Immunomodulation of Mesenchymal Stem/stromal Cells Under Inflammatory Conditions

Overview
Journal Cell Prolif
Date 2023 Oct 21
PMID 37864298
Authors
Affiliations
Soon will be listed here.
Abstract

Nuclear configuration plays a critical role in the compartmentalization of euchromatin and heterochromatin and the epigenetic regulation of gene expression. Under stimulation by inflammatory cytokines IFN-γ and TNF-α, human mesenchymal stromal cells (hMSCs) acquire a potent immunomodulatory function enabled by drastic induction of various effector genes, with some upregulated several magnitudes. However, whether the transcriptional upregulation of the immunomodulatory genes in hMSCs exposed to inflammatory cytokines is associated with genome-wide nuclear reconfiguration has not been explored. Here, we demonstrate that hMSCs undergo remarkable nuclear reconfiguration characterized by an enlargement of the nucleus, downregulation of LMNB1 and LMNA/C, decondensation of heterochromatin, and derepression of repetitive DNA. Interestingly, promyelocytic leukaemia-nuclear bodies (PML-NBs) were found to mediate the nuclear reconfiguration of hMSCs triggered by the inflammatory cytokines. Significantly, when PML was depleted, the immunomodulatory function of hMSCs conferred by cytokines was compromised, as reflected by the attenuated expression of effector molecules in hMSCs and their failure to block infiltration of immune cells to lipopolysaccharide (LPS)-induced acute lung injury. Our results indicate that the immunomodulatory function of hMSCs conferred by inflammatory cytokines requires PML-mediated chromatin loosening.

Citing Articles

PML-mediated nuclear loosening permits immunomodulation of mesenchymal stem/stromal cells under inflammatory conditions.

Chu Y, Jiang Z, Gong Z, Ji X, Zhu M, Shang Q Cell Prolif. 2023; 57(4):e13566.

PMID: 37864298 PMC: 10984101. DOI: 10.1111/cpr.13566.

References
1.
Bin Imtiaz M, Jaeger B, Bottes S, Machado R, Vidmar M, Moore D . Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell. 2021; 28(5):967-977.e8. DOI: 10.1016/j.stem.2021.01.015. View

2.
Sladitschek-Martens H, Guarnieri A, Brumana G, Zanconato F, Battilana G, Xiccato R . YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature. 2022; 607(7920):790-798. PMC: 7613988. DOI: 10.1038/s41586-022-04924-6. View

3.
Beck M, Fischer H, Grabner L, Groffics T, Winter M, Tangermann S . DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J. 2021; 40(22):e108234. PMC: 8591534. DOI: 10.15252/embj.2021108234. View

4.
Wang Y, Xie H, Chang X, Hu W, Li M, Li Y . Single-Cell Dissection of the Multiomic Landscape of High-Grade Serous Ovarian Cancer. Cancer Res. 2022; 82(21):3903-3916. PMC: 9627134. DOI: 10.1158/0008-5472.CAN-21-3819. View

5.
Grotzinger T, Jensen K, Will H . The interferon (IFN)-stimulated gene Sp100 promoter contains an IFN-gamma activation site and an imperfect IFN-stimulated response element which mediate type I IFN inducibility. J Biol Chem. 1996; 271(41):25253-60. DOI: 10.1074/jbc.271.41.25253. View