» Articles » PMID: 37859795

Effect of Anode Material and Dispersal Limitation on the Performance and Biofilm Community in Microbial Electrolysis Cells

Overview
Journal Biofilm
Date 2023 Oct 20
PMID 37859795
Authors
Affiliations
Soon will be listed here.
Abstract

In a microbial electrolysis cell (MEC), the oxidization of organic compounds is facilitated by an electrogenic biofilm on the anode surface. The biofilm community composition determines the function of the system. Both deterministic and stochastic factors affect the community, but the relative importance of different factors is poorly understood. Anode material is a deterministic factor as materials with different properties may select for different microorganisms. Ecological drift is a stochastic factor, which is amplified by dispersal limitation between communities. Here, we compared the effects of three anode materials (graphene, carbon cloth, and nickel) with the effect of dispersal limitation on the function and biofilm community assembly. Twelve MECs were operated for 56 days in four hydraulically connected loops and shotgun metagenomic sequencing was used to analyse the microbial community composition on the anode surfaces at the end of the experiment. The anode material was the most important factor affecting the performance of the MECs, explaining 54-80 % of the variance observed in peak current density, total electric charge generation, and start-up lag time, while dispersal limitation explained 10-16 % of the variance. Carbon cloth anodes had the highest current generation and shortest lag time. However, dispersal limitation was the most important factor affecting microbial community structure, explaining 61-98 % of the variance in community diversity, evenness, and the relative abundance of the most abundant taxa, while anode material explained 0-20 % of the variance. The biofilms contained nine metagenome-assembled genomes (MAGs), which made up 64-89 % of the communities and were likely responsible for electricity generation in the MECs. Different MAGs dominated in different MECs. Particularly two different genotypes related to competed for dominance on the anodes and reached relative abundances up to 83 %. The winning genotype was the same in all MECs that were hydraulically connected irrespective of anode material used.

References
1.
Liu S, Zeng T, Hofmann M, Burcombe E, Wei J, Jiang R . Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011; 5(9):6971-80. DOI: 10.1021/nn202451x. View

2.
Kang D, Li F, Kirton E, Thomas A, Egan R, An H . MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019; 7:e7359. PMC: 6662567. DOI: 10.7717/peerj.7359. View

3.
Bond D, Lovley D . Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 2003; 69(3):1548-55. PMC: 150094. DOI: 10.1128/AEM.69.3.1548-1555.2003. View

4.
Li D, Liu C, Luo R, Sadakane K, Lam T . MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015; 31(10):1674-6. DOI: 10.1093/bioinformatics/btv033. View

5.
Pumera M . Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec. 2009; 9(4):211-23. DOI: 10.1002/tcr.200900008. View