6.
Schultheiss C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes S
. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022; 3(6):100663.
PMC: 9214726.
DOI: 10.1016/j.xcrm.2022.100663.
View
7.
Knight J, Caricchio R, Casanova J, Combes A, Diamond B, Fox S
. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021; 131(24.
PMC: 8670833.
DOI: 10.1172/JCI154886.
View
8.
Zuo Y, Estes S, Ali R, Gandhi A, Yalavarthi S, Shi H
. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020; 12(570).
PMC: 7724273.
DOI: 10.1126/scitranslmed.abd3876.
View
9.
Hallmann E, Sikora D, Poniedzialek B, Szymanski K, Kondratiuk K, Zurawski J
. IgG autoantibodies against ACE2 in SARS-CoV-2 infected patients. J Med Virol. 2022; 95(1):e28273.
PMC: 9877908.
DOI: 10.1002/jmv.28273.
View
10.
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B
. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005; 11(8):875-9.
PMC: 7095783.
DOI: 10.1038/nm1267.
View
11.
Rodriguez-Perez A, Labandeira C, Pedrosa M, Valenzuela R, Suarez-Quintanilla J, Cortes-Ayaso M
. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J Autoimmun. 2021; 122:102683.
PMC: 8193025.
DOI: 10.1016/j.jaut.2021.102683.
View
12.
Son K, Jamil R, Chowdhury A, Mukherjee M, Venegas C, Miyasaki K
. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2022; 61(1).
PMC: 9515477.
DOI: 10.1183/13993003.00970-2022.
View
13.
Casciola-Rosen L, Thiemann D, Andrade F, Trejo-Zambrano M, Leonard E, Spangler J
. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022; 7(9).
PMC: 9090251.
DOI: 10.1172/jci.insight.158362.
View
14.
Wang E, Mao T, Klein J, Dai Y, Huck J, Jaycox J
. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021; 595(7866):283-288.
DOI: 10.1038/s41586-021-03631-y.
View
15.
Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S
. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2013; 88(2):1293-307.
PMC: 3911672.
DOI: 10.1128/JVI.02202-13.
View
16.
Meszaros B, Samano-Sanchez H, Alvarado-Valverde J, calyseva J, Martinez-Perez E, Alves R
. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal. 2021; 14(665).
PMC: 7928535.
DOI: 10.1126/scisignal.abd0334.
View
17.
Cantero-Navarro E, Fernandez-Fernandez B, Ramos A, Rayego-Mateos S, Rodrigues-Diez R, Sanchez-Nino M
. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol. 2021; 529:111254.
DOI: 10.1016/j.mce.2021.111254.
View
18.
Li W, Zhang C, Sui J, Kuhn J, Moore M, Luo S
. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005; 24(8):1634-43.
PMC: 1142572.
DOI: 10.1038/sj.emboj.7600640.
View
19.
Feng A, Yang E, Moore A, Dhingra S, Chang S, Yin X
. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight. 2023; 8(3).
PMC: 9977421.
DOI: 10.1172/jci.insight.163150.
View
20.
Muri J, Cecchinato V, Cavalli A, Shanbhag A, Matkovic M, Biggiogero M
. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat Immunol. 2023; 24(4):604-611.
PMC: 10063443.
DOI: 10.1038/s41590-023-01445-w.
View