6.
Ozturk B, Argin S, Ozilgen M, McClements D
. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chem. 2015; 187:499-506.
DOI: 10.1016/j.foodchem.2015.04.065.
View
7.
Parker R, Rigby N, Ridout M, Gunning A, Wilde P
. The adsorption-desorption behaviour and structure function relationships of bile salts. Soft Matter. 2014; 10(34):6457-66.
DOI: 10.1039/c4sm01093k.
View
8.
Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman J, Reppas C
. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2005; 23(1):165-76.
DOI: 10.1007/s11095-005-8476-1.
View
9.
Euston S, Baird W, Campbell L, Kuhns M
. Competitive adsorption of dihydroxy and trihydroxy bile salts with whey protein and casein in oil-in-water emulsions. Biomacromolecules. 2013; 14(6):1850-8.
DOI: 10.1021/bm4002443.
View
10.
Liu S, Liu H, Zhang L, Ma C, Abd El-Aty A
. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit Rev Food Sci Nutr. 2022; 64(16):5203-5219.
DOI: 10.1080/10408398.2022.2153238.
View
11.
Valdes K, Morales J, Rodriguez L, Gunther G
. Potential use of nanocarriers with pentacyclic triterpenes in cancer treatments. Nanomedicine (Lond). 2016; 11(23):3139-3156.
DOI: 10.2217/nnm-2016-0251.
View
12.
Davidov-Pardo G, McClements D
. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem. 2014; 167:205-12.
DOI: 10.1016/j.foodchem.2014.06.082.
View
13.
Morris V, Gunning A
. Microscopy, microstructure and displacement of proteins from interfaces: implications for food quality and digestion. Soft Matter. 2020; 4(5):943-951.
DOI: 10.1039/b718904d.
View
14.
Maldonado-Valderrama J, Wilde P, Macierzanka A, Mackie A
. The role of bile salts in digestion. Adv Colloid Interface Sci. 2011; 165(1):36-46.
DOI: 10.1016/j.cis.2010.12.002.
View
15.
Reis P, Watzke H, Leser M, Holmberg K, Miller R
. Interfacial mechanism of lipolysis as self-regulated process. Biophys Chem. 2010; 147(3):93-103.
DOI: 10.1016/j.bpc.2010.01.005.
View
16.
Ma J, Huang X, Yin S, Yu Y, Yang X
. Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model. Food Chem. 2021; 360:130152.
DOI: 10.1016/j.foodchem.2021.130152.
View
17.
Reis P, Holmberg K, Watzke H, Leser M, Miller R
. Lipases at interfaces: a review. Adv Colloid Interface Sci. 2008; 147-148:237-50.
DOI: 10.1016/j.cis.2008.06.001.
View
18.
Furtado N, Pirson L, Edelberg H, M Miranda L, Loira-Pastoriza C, Preat V
. Pentacyclic Triterpene Bioavailability: An Overview of In Vitro and In Vivo Studies. Molecules. 2017; 22(3).
PMC: 6155290.
DOI: 10.3390/molecules22030400.
View
19.
Martin D, Navarro Del Hierro J, Villanueva Bermejo D, Fernandez-Ruiz R, Fornari T, Reglero G
. Bioaccessibility and Antioxidant Activity of Calendula officinalis Supercritical Extract as Affected by in Vitro Codigestion with Olive Oil. J Agric Food Chem. 2016; 64(46):8828-8837.
DOI: 10.1021/acs.jafc.6b04313.
View
20.
Tan Y, Zhang Z, Zhou H, Xiao H, McClements D
. Factors impacting lipid digestion and β-carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): oil droplet concentration. Food Funct. 2020; 11(8):7126-7137.
DOI: 10.1039/d0fo01506g.
View