» Articles » PMID: 37821493

Structural Basis of Promiscuous Substrate Transport by Organic Cation Transporter 1

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Oct 11
PMID 37821493
Authors
Affiliations
Soon will be listed here.
Abstract

Organic Cation Transporter 1 (OCT1) plays a crucial role in hepatic metabolism by mediating the uptake of a range of metabolites and drugs. Genetic variations can alter the efficacy and safety of compounds transported by OCT1, such as those used for cardiovascular, oncological, and psychological indications. Despite its importance in drug pharmacokinetics, the substrate selectivity and underlying structural mechanisms of OCT1 remain poorly understood. Here, we present cryo-EM structures of full-length human OCT1 in the inward-open conformation, both ligand-free and drug-bound, indicating the basis for its broad substrate recognition. Comparison of our structures with those of outward-open OCTs provides molecular insight into the alternating access mechanism of OCTs. We observe that hydrophobic gates stabilize the inward-facing conformation, whereas charge neutralization in the binding pocket facilitates the release of cationic substrates. These findings provide a framework for understanding the structural basis of the promiscuity of drug binding and substrate translocation in OCT1.

Citing Articles

Structures and membrane interactions of human OAT1 in complex with clinical used drugs.

Wu X, Luo Y, Feng S, Ma H, Ke B, Wang K Sci Adv. 2025; 11(7):eads5405.

PMID: 39951534 PMC: 11827633. DOI: 10.1126/sciadv.ads5405.


Cryo-EM structure of the botulinum neurotoxin A/SV2B complex and its implications for translocation.

Khanppnavar B, Leka O, Pal S, Korkhov V, Kammerer R Nat Commun. 2025; 16(1):1224.

PMID: 39934119 PMC: 11814414. DOI: 10.1038/s41467-025-56304-z.


Mechanisms of urate transport and uricosuric drugs inhibition in human URAT1.

Guo W, Wei M, Li Y, Xu J, Zang J, Chen Y Nat Commun. 2025; 16(1):1512.

PMID: 39929841 PMC: 11811179. DOI: 10.1038/s41467-025-56843-5.


ATP-Binding Cassette and Solute Carrier Transporters: Understanding Their Mechanisms and Drug Modulation Through Structural and Modeling Approaches.

Elbahnsi A, Dudas B, Callebaut I, Hinzpeter A, Miteva M Pharmaceuticals (Basel). 2025; 17(12.

PMID: 39770445 PMC: 11676857. DOI: 10.3390/ph17121602.


Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3.

Li P, Zhu Z, Wang Y, Zhang X, Yang C, Zhu Y Nat Commun. 2024; 15(1):10924.

PMID: 39738067 PMC: 11686366. DOI: 10.1038/s41467-024-55359-8.


References
1.
Zamek-Gliszczynski M, Taub M, Chothe P, Chu X, Giacomini K, Kim R . Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin Pharmacol Ther. 2018; 104(5):890-899. PMC: 8211378. DOI: 10.1002/cpt.1112. View

2.
Egenberger B, Gorboulev V, Keller T, Gorbunov D, Gottlieb N, Geiger D . A substrate binding hinge domain is critical for transport-related structural changes of organic cation transporter 1. J Biol Chem. 2012; 287(37):31561-73. PMC: 3438988. DOI: 10.1074/jbc.M112.388793. View

3.
Saedder E, Thomsen A, Hasselstrom J, Jornil J . Heart insufficiency after combination of verapamil and metoprolol: A fatal case report and literature review. Clin Case Rep. 2019; 7(11):2042-2048. PMC: 6878084. DOI: 10.1002/ccr3.2393. View

4.
Grube M, Ameling S, Noutsias M, Kock K, Triebel I, Bonitz K . Selective regulation of cardiac organic cation transporter novel type 2 (OCTN2) in dilated cardiomyopathy. Am J Pathol. 2011; 178(6):2547-59. PMC: 3124333. DOI: 10.1016/j.ajpath.2011.02.020. View

5.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R . SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46(W1):W296-W303. PMC: 6030848. DOI: 10.1093/nar/gky427. View