» Articles » PMID: 37802967

HIt Discovery Using Docking ENriched by GEnerative Modeling (HIDDEN GEM): A Novel Computational Workflow for Accelerated Virtual Screening of Ultra-large Chemical Libraries

Overview
Journal Mol Inform
Date 2023 Oct 6
PMID 37802967
Authors
Affiliations
Soon will be listed here.
Abstract

Recent rapid expansion of make-on-demand, purchasable, chemical libraries comprising dozens of billions or even trillions of molecules has challenged the efficient application of traditional structure-based virtual screening methods that rely on molecular docking. We present a novel computational methodology termed HIDDEN GEM (HIt Discovery using Docking ENriched by GEnerative Modeling) that greatly accelerates virtual screening. This workflow uniquely integrates machine learning, generative chemistry, massive chemical similarity searching and molecular docking of small, selected libraries in the beginning and the end of the workflow. For each target, HIDDEN GEM nominates a small number of top-scoring virtual hits prioritized from ultra-large chemical libraries. We have benchmarked HIDDEN GEM by conducting virtual screening campaigns for 16 diverse protein targets using Enamine REAL Space library comprising 37 billion molecules. We show that HIDDEN GEM yields the highest enrichment factors as compared to state of the art accelerated virtual screening methods, while requiring the least computational resources. HIDDEN GEM can be executed with any docking software and employed by users with limited computational resources.

Citing Articles

Alternative weighting schemes for fine-tuned extended similarity indices.

Lopez Perez K, Racz A, Bajusz D, Gonzalez C, Heberger K, Alain Miranda-Quintana R J Chemom. 2024; 38(9).

PMID: 39640020 PMC: 11619927. DOI: 10.1002/cem.3558.


Exploring Chemical Spaces in the Billion Range: Is Docking a Computational Alternative to DNA-Encoded Libraries?.

Mihalovits L, Szalai T, Bajusz D, Keseru G J Chem Inf Model. 2024; 64(23):8963-8979.

PMID: 39305268 PMC: 11632764. DOI: 10.1021/acs.jcim.4c00803.


Correlation of protein binding pocket properties with hits' chemistries used in generation of ultra-large virtual libraries.

Song R, Nicklaus M, Tarasova N J Comput Aided Mol Des. 2024; 38(1):22.

PMID: 38753096 PMC: 11098933. DOI: 10.1007/s10822-024-00562-4.

References
1.
Whitehead L, Dobler M, Radetich B, Zhu Y, Atadja P, Claiborne T . Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg Med Chem. 2011; 19(15):4626-34. DOI: 10.1016/j.bmc.2011.06.030. View

2.
van Marrewijk L, Polyak S, Hijnen M, Kuruvilla D, Chang M, Shin Y . SR2067 Reveals a Unique Kinetic and Structural Signature for PPARγ Partial Agonism. ACS Chem Biol. 2015; 11(1):273-83. PMC: 4819005. DOI: 10.1021/acschembio.5b00580. View

3.
Lyu J, Irwin J, Shoichet B . Modeling the expansion of virtual screening libraries. Nat Chem Biol. 2023; 19(6):712-718. PMC: 10243288. DOI: 10.1038/s41589-022-01234-w. View

4.
Eberhardt J, Santos-Martins D, Tillack A, Forli S . AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021; 61(8):3891-3898. PMC: 10683950. DOI: 10.1021/acs.jcim.1c00203. View

5.
Choi J, Lee J . V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization. Int J Mol Sci. 2021; 22(21). PMC: 8584000. DOI: 10.3390/ijms222111635. View