» Articles » PMID: 37765170

Long-Term Survival and Induction of Operational Tolerance to Murine Islet Allografts by Co-Transplanting Cyclosporine A Microparticles and CTLA4-Ig

Overview
Journal Pharmaceutics
Publisher MDPI
Date 2023 Sep 28
PMID 37765170
Authors
Affiliations
Soon will be listed here.
Abstract

One strategy to prevent islet rejection is to create a favorable immune-protective local environment at the transplant site. Herein, we utilize localized cyclosporine A (CsA) delivery to islet grafts via poly(lactic-co-glycolic acid) (PLGA) microparticles to attenuate allograft rejection. CsA-eluting PLGA microparticles were prepared using a single emulsion (oil-in-water) solvent evaporation technique. CsA microparticles alone significantly delayed islet allograft rejection compared to islets alone ( < 0.05). Over 50% (6/11) of recipients receiving CsA microparticles and short-term cytotoxic T lymphocyte-associated antigen 4-Ig (CTLA4-Ig) therapy displayed prolonged allograft survival for 214 days, compared to 25% (2/8) receiving CTLA4-Ig alone. CsA microparticles alone and CsA microparticles + CTLA4-Ig islet allografts exhibited reduced T-cell (CD4 and CD8 cells, < 0.001) and macrophage (CD68 cells, < 0.001) infiltration compared to islets alone. We observed the reduced mRNA expression of proinflammatory cytokines (, , , and ; < 0.05) and chemokines (, , , and ; < 0.05) in CsA microparticles + CTLA4-Ig allografts compared to islets alone. Long-term islet allografts contained insulin and intra-graft FoxP3 T regulatory cells. The rapid rejection of third-party skin grafts (C3H) in islet allograft recipients suggests that CsA microparticles + CTLA4-Ig therapy induced operational tolerance. This study demonstrates that localized CsA drug delivery plus short-course systemic immunosuppression promotes an immune protective transplant niche for allogeneic islets.

Citing Articles

The Future of Beta Cells Replacement in the Era of Regenerative Medicine and Organ Bioengineering.

Berishvili E, Peloso A, Tomei A, Pepper A Transpl Int. 2024; 37:12885.

PMID: 38544564 PMC: 10966588. DOI: 10.3389/ti.2024.12885.

References
1.
Bruni A, Gala-Lopez B, Pepper A, Abualhassan N, Shapiro A . Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes. 2014; 7:211-23. PMC: 4075233. DOI: 10.2147/DMSO.S50789. View

2.
Eizirik D, Mandrup-Poulsen T . A choice of death--the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2002; 44(12):2115-33. DOI: 10.1007/s001250100021. View

3.
Grey S, Longo C, Shukri T, Patel V, Csizmadia E, Daniel S . Genetic engineering of a suboptimal islet graft with A20 preserves beta cell mass and function. J Immunol. 2003; 170(12):6250-6. DOI: 10.4049/jimmunol.170.12.6250. View

4.
Tang L, Azzi J, Kwon M, Mounayar M, Tong R, Yin Q . Immunosuppressive Activity of Size-Controlled PEG-PLGA Nanoparticles Containing Encapsulated Cyclosporine A. J Transplant. 2012; 2012:896141. PMC: 3321582. DOI: 10.1155/2012/896141. View

5.
Drachenberg C, Klassen D, Weir M, Wiland A, Fink J, Bartlett S . Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. Transplantation. 1999; 68(3):396-402. DOI: 10.1097/00007890-199908150-00012. View